Idempotent linear relations

被引:2
|
作者
Laura Ariasa, M. [1 ,2 ]
Continoa, Maximiliano [1 ,2 ]
Maestripieria, Alejandra [1 ,2 ]
Marcantogninia, Stefania [1 ,3 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Inst Argentino Matemat Alberto P Calderon, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ingn, Dept Matemat, Buenos Aires, DF, Argentina
[3] Univ Nacl Gen Sarmiento, Inst Ciencias, Los Polvorines, Buenos Aires, Argentina
关键词
Multivalued linear operators; Linear relations; Projections; Idempotents; LEAST-SQUARES SOLUTIONS;
D O I
10.1016/j.jmaa.2022.126559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear relation E acting on a Hilbert space is idempotent if E-2 = E. A triplet of subspaces is needed to characterize a given idempotent: (ran E, ran(I- E), dom E), or equivalently, (ker(I- E), ker E, mul E). The relations satisfying the inclusions E-2 subset of E(sub-idempotent) or E subset of E-2(super-idempotent) play an important role. Lastly, the adjoint and the closure of an idempotent linear relation are studied. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条