Fast deterministic method of solving the Boltzmann equation for hard spheres

被引:65
|
作者
Bobylev, AV
Rjasanow, S
机构
[1] Univ Saarland, Fachbereich Math 9, D-66041 Saarbrucken, Germany
[2] MV Keldysh Appl Math Inst, Moscow 125047, Russia
关键词
Direct Simulation Monte Carlo; hard spheres model; deterministic;
D O I
10.1016/S0997-7546(99)00121-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A special form of the Boltzmann collision operator for the hard spheres model is introduced. The possibilities of fast numerical computation of the collision operator based on this form and the Fast Fourier Transform are discussed. A new difference scheme for the Boltzmann equation for the hard spheres model is developed. The results of some numerical tests and accuracy comparisons with the Direct Simulation Monte Carlo (DSMC) method are presented. (C) 1999 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:869 / 887
页数:19
相关论文
共 50 条
  • [1] A DETERMINISTIC METHOD FOR SOLVING THE HOMOGENEOUS BOLTZMANN-EQUATION
    COQUEL, F
    ROGIER, F
    SCHNEIDER, J
    RECHERCHE AEROSPATIALE, 1992, (03): : 1 - 10
  • [2] A DETERMINISTIC METHOD FOR SOLVING THE UNHOMOGENEOUS BOLTZMANN-EQUATION
    MARTIN, YL
    ROGIER, F
    SCHNEIDER, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (06): : 483 - 487
  • [3] Fast Deterministic Methods for the Boltzmann Equation
    Sergej, Rjasanow
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2008, 2009, 406 : 199 - 204
  • [4] A DETERMINISTIC PARTICLE-METHOD SOLVING THE LINEARIZED BOLTZMANN-EQUATION
    GEYER, T
    WICK, J
    COMPUTING, 1990, 43 (03) : 199 - 207
  • [5] The dissipative linear Boltzmann equation for hard spheres
    Lods, B
    Toscani, G
    JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) : 635 - 664
  • [6] BOLTZMANN EQUATION FOR HARD SPHERES IN DIFFERENTIAL FORM
    WACHMAN, M
    PHYSICS OF FLUIDS, 1964, 7 (02) : 170 - 173
  • [7] Dissipative Linear Boltzmann Equation for Hard Spheres
    Bertrand Lods
    Giuseppe Toscani
    Journal of Statistical Physics, 2004, 117 : 635 - 664
  • [8] Deterministic numerical solutions of the Boltzmann equation using the fast spectral method
    Wu, Lei
    White, Craig
    Scanlon, Thomas J.
    Reese, Jason M.
    Zhang, Yonghao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 27 - 52
  • [9] A deterministic spectral method for solving the Boltzmann equation for one-dimensional flows
    Watchararuangwit, Chatchawan
    Grigoriev, Yurii N.
    Meleshko, Sergey V.
    SCIENCEASIA, 2009, 35 (01): : 70 - 79
  • [10] A NOTE ON THE BOLTZMANN-EQUATION FOR HARD-SPHERES
    POMEAU, Y
    JOURNAL OF STATISTICAL PHYSICS, 1985, 40 (1-2) : 361 - 364