OBLIQUE RANDOM SURVIVAL FORESTS

被引:0
|
作者
Jaeger, Byron C. [1 ]
Long, D. Leann [1 ]
Long, Dustin M. [1 ]
Sims, Mario [2 ]
Szychowski, Jeff M. [1 ]
Min, Yuan-, I [2 ]
Mcclure, Leslie A. [3 ]
Howard, George [1 ]
Simon, Noah [4 ]
机构
[1] Univ Alabama Birmingham, Dept Biostat, 327K RYALS Publ Hlth Bldg,1665 Univ Blvd, Birmingham, AL 35294 USA
[2] Univ Mississippi, Med Ctr, Dept Med, Jackson, MS 39216 USA
[3] Drexel Univ, Dornsife Sch Publ Hlth, Philadelphia, PA 19104 USA
[4] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
来源
ANNALS OF APPLIED STATISTICS | 2019年 / 13卷 / 03期
基金
美国国家卫生研究院;
关键词
Random forest; survival; machine learning; penalized regression; cardiovascular disease; GENE-EXPRESSION; REGULARIZATION PATHS; REGRESSION TREES; CLASSIFICATION; CHEMOTHERAPY; ASSOCIATION; CLASSIFIERS; MODELS;
D O I
10.1214/19-AOAS1261
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce and evaluate the oblique random survival forest (ORSF). The ORSF is an ensemble method for right-censored survival data that uses linear combinations of input variables to recursively partition a set of training data. Regularized Cox proportional hazard models are used to identify linear combinations of input variables in each recursive partitioning step. Benchmark results using simulated and real data indicate that the ORSF's predicted risk function has high prognostic value in comparison to random survival forests, conditional inference forests, regression and boosting. In an application to data from the Jackson Heart Study, we demonstrate variable and partial dependence using the ORSF and highlight characteristics of its ten-year predicted risk function for atherosclerotic cardiovascular disease events (AS-CVD; stroke, coronary heart disease). We present visualizations comparing variable and partial effect estimation according to the ORSF, the conditional inference forest, and the Pooled Cohort Risk equations. The oblique RSF R package, which provides functions to fit the ORSF and create variable and partial dependence plots, is available on the comprehensive R archive network (CRAN).
引用
收藏
页码:1847 / 1883
页数:37
相关论文
共 50 条
  • [1] Accelerated and Interpretable Oblique Random Survival Forests
    Jaeger, Byron C.
    Welden, Sawyer
    Lenoir, Kristin
    Speiser, Jaime L.
    Segar, Matthew W.
    Pandey, Ambarish
    Pajewski, Nicholas M.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (01) : 192 - 207
  • [2] On Oblique Random Forests
    Menze, Bjoern H.
    Kelm, B. Michael
    Splitthoff, Daniel N.
    Koethe, Ullrich
    Hamprecht, Fred A.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2011, 6912 : 453 - 469
  • [3] Imprecise Extensions of Random Forests and Random Survival Forests
    Utkin, Lev, V
    Kovalev, Maxim S.
    Meldo, Anna A.
    Coolen, Frank P. A.
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 404 - 413
  • [4] RANDOM SURVIVAL FORESTS
    Ishwaran, Hemant
    Kogalur, Udaya B.
    Blackstone, Eugene H.
    Lauer, Michael S.
    ANNALS OF APPLIED STATISTICS, 2008, 2 (03): : 841 - 860
  • [5] Random Survival Forests
    Taylor, Jeremy M. G.
    JOURNAL OF THORACIC ONCOLOGY, 2011, 6 (12) : 1974 - 1975
  • [6] Consistency of random survival forests
    Ishwaran, Hemant
    Kogalur, Udaya B.
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (13-14) : 1056 - 1064
  • [7] Robust Visual Tracking Using Oblique Random Forests
    Zhang, Le
    Varadarajan, Jagannadan
    Suganthan, Ponnuthurai Nagaratnam
    Ahuja, Narendra
    Moulin, Pierre
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5825 - 5834
  • [8] Pathway hunting by random survival forests
    Chen, Xi
    Ishwaran, Hemant
    BIOINFORMATICS, 2013, 29 (01) : 99 - 105
  • [9] Random survival forests for competing risks
    Ishwaran, Hemant
    Gerds, Thomas A.
    Kogalur, Udaya B.
    Moore, Richard D.
    Gange, Stephen J.
    Lau, Bryan M.
    BIOSTATISTICS, 2014, 15 (04) : 757 - 773
  • [10] Conformal prediction using random survival forests
    Bostrom, Henrik
    Asker, Lars
    Gurung, Ram
    Karlsson, Isak
    Lindgren, Tony
    Papapetrou, Panagiotis
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 812 - 817