In Situ Hydrothermal Synthesis of Mn3O4 Nanoparticles on Nitrogen-doped Graphene as High-Performance Anode materials for Lithium Ion Batteries

被引:136
|
作者
Park, Seung-Keun [1 ]
Jin, Aihua [2 ,3 ]
Yu, Seung-Ho [2 ,3 ,4 ]
Ha, Jeonghyun [1 ]
Jang, Byungchul [1 ]
Bong, Sungyool [1 ,5 ]
Woo, Seunghee [6 ]
Sung, Yung-Eun [2 ,3 ]
Piao, Yuanzhe [1 ,5 ]
机构
[1] Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Program Nano Sci & Technol, Suwon 443270, South Korea
[2] Seoul Natl Univ, Ctr Nanoparticle Res, Inst Basic Sci, Seoul 151744, South Korea
[3] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151744, South Korea
[4] Seoul Natl Univ, RIAM, Seoul 151742, South Korea
[5] Adv Inst Convergence Technol, Suwon 443270, Gyeonggi Do, South Korea
[6] Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
lithium ion battery; anode; manganese oxide; graphene; doping; IMPROVED REVERSIBLE CAPACITY; ELECTROCHEMICAL PERFORMANCE; SYNERGISTIC CATALYST; CO3O4; NANOCRYSTALS; STORAGE PROPERTIES; CYCLIC STABILITY; FACILE; COMPOSITES; NANOSHEETS; HYBRID;
D O I
10.1016/j.electacta.2013.12.018
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Developing new electrode materials with high specific capacity for excellent lithium ion storage properties is very desirable. In this paper, we introduce a simple hydrothermal method for the growth of Mn3O4 nanoparticles onto nitrogen-doped graphene (N-doped graphene) for high-performance lithium ion battery (LIB) anodes. Hydrazine plays a fundamental role in the formation of such nanostructures as it can act both as a reducing agent and as a nitrogen source. In the synthesized composite, highly crystalline Mn3O4 nanoparticles with average sizes of 20-50 nm are homogeneously dispersed on both sides of the N-doped graphene. The nitrogen content in the doped graphene is confirmed by elemental analyzer, and 2 wt% of the sample is found to be composed of nitrogen element. The as-prepared Mn3O4/N-doped graphene composites exhibit remarkable electrochemical performance, including high reversible specific capacity, outstanding cycling stability, and excellent rate capability (approximately 400 mA h g(-1) at 2.0 A g(-1)) when used as the anode material for LIBs. The improvement in the electrochemical properties of the material can be attributed to graphene, which acts as both an electron conductor and a volume buffer layer, and nitrogen doping allows for fast electron and ion transfer by decreasing the energy barrier. This type of metal oxide/N-doped graphene composites can be promising candidates for high-performance anode materials for LIBs. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:452 / 459
页数:8
相关论文
共 50 条
  • [1] One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries
    Zheng Xing
    Zhicheng Ju
    Yulong Zhao
    Jialu Wan
    Yabo Zhu
    Yinghuai Qiang
    Yitai Qian
    Scientific Reports, 6
  • [2] One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries
    Xing, Zheng
    Ju, Zhicheng
    Zhao, Yulong
    Wan, Jialu
    Zhu, Yabo
    Qiang, Yinghuai
    Qian, Yitai
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Nitrogen-doped porous carbon/Mn3O4 composites as anode materials for lithium-ion batteries
    Shan, Jie
    Wang, Jian-jiao
    Zhao, Yun
    Huang, Jie-jie
    SOLID STATE SCIENCES, 2019, 92 : 89 - 95
  • [4] In-situ synthesis of reduced graphene oxide wrapped Mn3O4 nanocomposite as anode materials for high-performance lithium-ion batteries
    Chen, Jingqi
    Bai, Zhenhua
    Li, Xuetong
    Wang, Qingliang
    Du, Jinlong
    Lu, Rihuan
    Liu, Xianghua
    CERAMICS INTERNATIONAL, 2022, 48 (21) : 31923 - 31930
  • [5] Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries
    Han, Xiaoyan
    Cui, Yiping
    Liu, Haowen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 814
  • [6] Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries
    Han, Xiaoyan
    Cui, Yiping
    Liu, Haowen
    Journal of Alloys and Compounds, 2022, 814
  • [7] Synthesis and characterization of hollow Mn3O4 nanoparticles as anode materials for lithium ion batteries
    Varapragasam, Shelton Jesuraj Pragash
    Balasanthiran, Choumini
    Gurung, Ashim
    Qiao, Qiquan
    Rioux, Robert
    Hoefelmeyer, James
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [8] In Situ Synthesis of Mn3O4 Nanoparticles on Hollow Carbon Nanofiber as High-Performance Lithium-Ion Battery Anode
    Zhang, Dan
    Li, Guangshe
    Fan, Jianming
    Li, Baoyun
    Li, Liping
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (38) : 9632 - 9638
  • [9] Nitrogen-doped graphene supported NiFe2O4 nanoparticles as high-performance anode material for lithium-ion batteries
    Pan, Shugang
    Zhao, Xianmin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (22) : 26917 - 26928
  • [10] Nitrogen-doped graphene supported NiFe2O4 nanoparticles as high-performance anode material for lithium-ion batteries
    Shugang Pan
    Xianmin Zhao
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 26917 - 26928