Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization

被引:12
|
作者
Gyllenberg, Mats [1 ]
Scarabel, Francesca [1 ,3 ,4 ]
Vermiglio, Rossana [2 ,3 ,4 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Gustaf Hallstromin Katu 2b,POB 68, FI-00014 Helsinki, Finland
[2] Univ Udine, Dept Math Comp Sci & Phys, Via Sci 26, I-33100 Udine, Italy
[3] Univ Udine, Dept Math Comp Sci & Phys, CDLab Computat Dynam Lab, Via Sci 26, I-33100 Udine, Italy
[4] INdAM Res Grp GNCSC, Helsinki, Finland
基金
芬兰科学院;
关键词
Volterra integral equations; Renewal equations; Delay differential equations; Laguerre pseudospectral discretization; Physiologically structured population models; Finite dimensional state representation; Infinite delay; PERTURBATION-THEORY; DUAL SEMIGROUPS; GENERATION; MODELS;
D O I
10.1016/j.amc.2018.03.104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the problem of the numerical bifurcation analysis of general nonlinear delay equations, including integral and integro-differential equations, for which no software is currently available. Pseudospectral discretization is applied to the abstract reformulation of equations with infinite delay to obtain a finite dimensional system of ordinary differential equations, whose properties can be numerically studied with well-developed software. We explore the applicability of the method on some test problems and provide some numerical evidence of the convergence of the approximations. (C) 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/
引用
收藏
页码:490 / 505
页数:16
相关论文
共 50 条
  • [1] EQUATIONS WITH INFINITE DELAY: PSEUDOSPECTRAL DISCRETIZATION FOR NUMERICAL STABILITY AND BIFURCATION IN AN ABSTRACT FRAMEWORK
    Scarabel, Francesca
    Vermiglio, Rossana
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (04) : 1736 - 1758
  • [2] Pseudospectral Discretization of Nonlinear Delay Equations: New Prospects for Numerical Bifurcation Analysis
    Breda, D.
    Diekmann, O.
    Gyllenberg, M.
    Scarabel, F.
    Vermiglio, R.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 1 - 23
  • [3] Numerical bifurcation analysis of renewal equations via pseudospectral approximation
    Scarabel, Francesca
    Diekmann, Odo
    Vermiglio, Rossana
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 397
  • [4] Exponential time integration for delay differential equations via pseudospectral discretization
    Ando, Alessia
    Vermiglio, Rossana
    IFAC PAPERSONLINE, 2024, 58 (27): : 190 - 195
  • [5] Stability and Neimark-Sacker bifurcation of numerical discretization of delay differential equations
    He, Zhimin
    Lai, Xin
    Hou, Aiyu
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 2010 - 2017
  • [6] Numerical bifurcation analysis of delay differential equations
    Engelborghs, K
    Luzyanina, T
    Roose, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 265 - 275
  • [7] Pseudospectral Approximation of Hopf Bifurcation for Delay Differential Equations
    de Wolff, B. A. J.
    Scarabel, F.
    Lunel, S. M. Verduyn
    Diekmann, O.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (01): : 333 - 370
  • [8] Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation
    Wu Jie
    Zhan Xi-Sheng
    Zhang Xian-He
    Gao Hong-Liang
    CHINESE PHYSICS LETTERS, 2012, 29 (05)
  • [9] A numerical approach for the bifurcation analysis of nonsmooth delay equations
    Paez Chavez, Joseph
    Zhang, Zhi
    Liu, Yang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83 (83):
  • [10] Numerical Bifurcation Analysis of Physiologically Structured Population Models via Pseudospectral Approximation
    Francesca Scarabel
    Dimitri Breda
    Odo Diekmann
    Mats Gyllenberg
    Rossana Vermiglio
    Vietnam Journal of Mathematics, 2021, 49 : 37 - 67