Enveloping algebras with just infinite Gelfand-Kirillov dimension

被引:2
|
作者
Iyudu, Natalia K. [1 ]
Sierra, Susan J. [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
来源
ARKIV FOR MATEMATIK | 2020年 / 58卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
Witt algebra; positive Witt algebra; Virasoro algebra; Gelfand-Kirillov dimension; MODULES;
D O I
10.4310/ARKIV.2020.v58.n2.a4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be the Witt algebra or the positive Witt algebra. It is well known that the enveloping algebra U(g) has intermediate growth and thus infinite Gelfand-Kirillov (GK-) dimension. We prove that the GK-dimension of U(g) is just infinite in the sense that any proper quotient of U(g) has polynomial growth. This proves a conjecture of Petukhov and the second named author for the positive Witt algebra. We also establish the corresponding results for quotients of the symmetric algebra S(g) by proper Poisson ideals. In fact, we prove more generally that any central quotient of the universal enveloping algebra of the Virasoro algebra has just infinite GK-dimension. We give several applications. In particular, we easily compute the annihilators of Verma modules over the Virasoro algebra.
引用
收藏
页码:285 / 306
页数:22
相关论文
共 50 条
  • [1] GELFAND-KIRILLOV DIMENSION IN ENVELOPING-ALGEBRAS
    LENAGAN, TH
    QUARTERLY JOURNAL OF MATHEMATICS, 1981, 32 (125): : 69 - 80
  • [2] On Nichols algebras of infinite rank with finite Gelfand-Kirillov dimension
    Andruskiewitsch, Nicolas
    Angiono, Ivan
    Heckenberger, Istvan
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (01) : 81 - 101
  • [3] Graph algebras and the Gelfand-Kirillov dimension
    Moreno-Fernandez, Jose M.
    Siles Molina, Mercedes
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (05)
  • [4] GELFAND-KIRILLOV DIMENSION OF PI ALGEBRAS
    MALLIAVINBRAMERET, MP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (13): : 679 - 681
  • [5] ON ALGEBRAS WITH GELFAND-KIRILLOV DIMENSION ONE
    KOBAYASHI, S
    KOBAYASHI, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (04) : 1095 - 1104
  • [6] Gelfand-Kirillov dimension in Jordan algebras
    Martinez, C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) : 119 - 126
  • [7] Gelfand-Kirillov dimension of bicommutative algebras
    Bai, Yuxiu
    Chen, Yuqun
    Zhang, Zerui
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (22): : 7623 - 7649
  • [8] Gelfand-Kirillov dimension of brace algebras
    Li, Yu
    Moa, Qiuhui
    Zhang, Wenchao
    Zhao, Xiangui
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [9] Jordan algebras of Gelfand-Kirillov dimension one
    Martinez, C
    Zelmanov, E
    JOURNAL OF ALGEBRA, 1996, 180 (01) : 211 - 238
  • [10] Gelfand-Kirillov dimension of differential difference algebras
    Zhang, Yang
    Zhao, Xiangui
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 (01): : 485 - 495