Experimental investigation on the energy absorption characteristics of honeycomb sandwich panels under quasi-static punch loading

被引:39
|
作者
Mahmoudabadi, M. Zarei [1 ]
Sadighi, M. [1 ]
机构
[1] Amirkabir Univ Technol, Dept Mech Engn, Tehran, Iran
关键词
Honeycomb sandwich panel; Energy absorption; Punch loading; Failure modes; Experiments; METAL HEXAGONAL HONEYCOMB; IMPACT; BEHAVIOR; FAILURE; CORE;
D O I
10.1016/j.ast.2019.02.035
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The energy absorption characteristics of sandwich panels with aluminum plate as facesheet and metal hexagonal honeycomb as the core are investigated under quasi-static punch loading using two flat nose and spherical projectiles, experimentally. Failure modes are classified as plastic hinges, facesheet wrinkling, debonding of the adhesive layer between the facesheet and core, facesheet tearing, out of plane core crushing, in-plane core folding, core tearing and detachment from the support. Furthermore, the article examines the influences of six parameters including honeycomb wall thickness, sandwich core thickness, facesheet thickness, aspect ratio, adhesive layer between facesheet and core and existence of bottom facesheet. The results show that the increase in core thickness improves the energy absorption parameters of sandwich panel better than the increase in the facesheet thickness. Specific absorbed energy is increased linearly by increasing the honeycomb core thickness while it seems that the mentioned parameter has a meaningless dependence on the facesheet thickness. In addition, a 12 percent quota of adhesive layer between top facesheet and core is indicated in the energy absorption capacity of a sandwich panel for both flat nose and spherical projectiles, while its effect on the value of maximum force is 17% using flat nose projectile and 25% using the other one. Despite the major influence of the existence or non-existence of the bottom facesheet on the sandwich failure modes, its absorbed energy changes less than 3.5 percent; yet other parameters such as specific energy absorption and peak load are more dependent on the existence or non-existence of the bottom facesheet. Finally, keeping the honeycomb wall less thick improves the energy absorption characteristics of the sandwich panel. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:273 / 286
页数:14
相关论文
共 50 条
  • [1] Experimental investigation on the energy absorption characteristics of sandwich panels with layering of foam core under quasi-static punch loading
    Kazemi, M.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (21) : 3067 - 3075
  • [2] Damage characteristics of composite honeycomb sandwich panels in bending under quasi-static loading
    Zhou, G
    Hill, M
    Loughlan, J
    Hookham, N
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2006, 8 (01) : 55 - 90
  • [3] Experimental evaluation of the crush energy absorption of triggered composite sandwich panels under quasi-static edgewise compressive loading
    Joosten, M. W.
    Dutton, S.
    Kelly, D.
    Thomson, R.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (09) : 1099 - 1106
  • [4] ALUMINIUM HONEYCOMB UNDER QUASI-STATIC COMPRESSIVE LOADING: AN EXPERIMENTAL INVESTIGATION
    Said, Mohamad Radzai
    Tan, Chee-Fai
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2009, 16 (01): : 1 - 8
  • [5] ALUMINIUM HONEYCOMB UNDER QUASI-STATIC COMPRESSIVE LOADING: AN EXPERIMENTAL INVESTIGATION
    Said, Mohamad Radzai
    Tan, Chee-Fai
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2008, 15 (01): : 1 - 8
  • [6] Energy absorption of foam-filled corrugated core sandwich panels under quasi-static loading
    Taghipoor, Hossein
    Sefidi, Mahdi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2023, 237 (01) : 234 - 246
  • [7] Numerical and experimental study of energy absorption of PLA calibrated honeycomb structures under quasi-static loading
    Hashemi, Sayedshahabodin
    Galehdari, Seyed Ali
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (01)
  • [8] Characteristics of bio-sandwich composites with montmorillonite nanoclay under quasi-static punch loading
    Sharma, Ankush P.
    Velmurugan, R.
    Shukla, S.
    Bhandari, T.
    Guha, M.
    Mukherjee, S.
    POLYMER COMPOSITES, 2024,
  • [9] Performance assessment of metallic sandwich panels under quasi-static loading
    Khalifa, Yasser A.
    El-Dakhakhni, Wael W.
    Campidelli, Manuel
    Tait, Michael J.
    ENGINEERING STRUCTURES, 2018, 158 : 79 - 94
  • [10] QUASI-STATIC PUNCH INDENTATION OF A HONEYCOMB SANDWICH PLATE: EXPERIMENTS AND MODELLING
    Mohr, Dirk
    Xue, Zhenyu
    Vaziri, Ashkan
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2006, 1 (03) : 581 - 604