On the Darboux Problem for a Hyperbolic System of Equations with Multiple Characteristics

被引:0
|
作者
Mironov, A. N. [1 ]
Volkov, A. P. [2 ]
机构
[1] Kazan Fed Univ, Elabuga Inst, Yelabuga 423600, Russia
[2] Samara State Tech Univ, Samara 443100, Russia
关键词
hyperbolic system; Riemann method; Riemann matrix; Riemann-Hadamard method; Riemann-Hadamard matrix; characteristics; BOUNDARY-VALUE-PROBLEMS; NORMAL DERIVATIVES; CAUCHY-PROBLEM;
D O I
10.3103/S1066369X22080060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence and uniqueness of a solution of the boundary value problem with conditions on one of the characteristics and on the free line for a system of hyperbolic equations with multiple characteristics. An analog of the Riemann-Hadamard method for this problem is developed, and a definition of the Riemann-Hadamard matrix is given. The solution of this problem is constructed in terms of the introduced Riemann-Hadamard matrix.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条