First-principle proof of the modified collision boundary conditions for the hard-sphere system

被引:11
|
作者
Tessarotto, Massimo [1 ]
Cremaschini, Claudio [2 ]
机构
[1] Univ Trieste, Dept Math & Geosci, I-34127 Trieste, Italy
[2] Silesian Univ, Fac Philosophy & Sci, Inst Phys, CZ-74601 Opava, Czech Republic
关键词
Classical statistical mechanics; Hard-sphere system; Liouville equation; Collision boundary conditions; Probability density functions; KINETIC-THEORY; LAGRANGIAN DYNAMICS; BOLTZMANN-EQUATION; FLUIDS; PARTICLES;
D O I
10.1016/j.physleta.2014.04.054
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fundamental issue lying at the foundation of classical statistical mechanics is the determination of the collision boundary conditions that characterize the dynamical evolution of multi-particle probability density functions (PDF) and are applicable to systems of hard-spheres undergoing multiple elastic collisions. In this paper it is proved that, when the deterministic N-body PDF is included in the class of admissible solutions of the Liouville equation, the customary form of collision boundary conditions adopted in previous literature becomes physically inconsistent and must actually be replaced by suitably modified collision boundary conditions. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1760 / 1766
页数:7
相关论文
共 50 条
  • [1] Modified BBGKY hierarchy for the hard-sphere system
    Tessarotto, Massimo
    Cremaschini, Claudio
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (11):
  • [2] Modified BBGKY hierarchy for the hard-sphere system
    Massimo Tessarotto
    Claudio Cremaschini
    The European Physical Journal Plus, 129
  • [3] EIGENFUNCTIONS AND SPECTRUM OF HARD-SPHERE COLLISION OPERATOR
    JENSSEN, OO
    PHYSICA NORVEGICA, 1972, 6 (3-4): : 179 - 191
  • [4] HARD-SPHERE BINARY-COLLISION OPERATORS
    DORFMAN, JR
    ERNST, MH
    JOURNAL OF STATISTICAL PHYSICS, 1989, 57 (3-4) : 581 - 593
  • [5] HARD-SPHERE DYNAMICS AND BINARY-COLLISION OPERATORS
    ERNST, MH
    DORFMAN, JR
    HOEGY, WR
    VANLEEUW.JM
    PHYSICA, 1969, 45 (01): : 127 - &
  • [6] A MODIFIED PERTURBED HARD-SPHERE EQUATION OF STATE
    ALY, G
    ASHOUR, I
    FLUID PHASE EQUILIBRIA, 1994, 101 : 137 - 156
  • [7] PRIMARY RELAXATION IN A HARD-SPHERE SYSTEM
    FUCHS, M
    HOFACKER, I
    LATZ, A
    PHYSICAL REVIEW A, 1992, 45 (02): : 898 - 912
  • [8] Propagation of Correlations in a Hard-Sphere System
    Viktor Gerasimenko
    Igor Gapyak
    Journal of Statistical Physics, 2022, 189
  • [9] Propagation of Correlations in a Hard-Sphere System
    Gerasimenko, Viktor
    Gapyak, Igor
    JOURNAL OF STATISTICAL PHYSICS, 2022, 189 (01)
  • [10] METASTABLE DYNAMICS OF THE HARD-SPHERE SYSTEM
    YEO, J
    PHYSICAL REVIEW E, 1995, 52 (01): : 853 - 861