On Two-Dimensional Quaternion Wigner-Ville Distribution

被引:25
|
作者
Bahri, Mawardi [1 ]
机构
[1] Hasanuddin Univ, Dept Math, Makassar 90245, Indonesia
关键词
FOURIER-TRANSFORM; THEOREMS;
D O I
10.1155/2014/139471
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the two-dimensional quaternion Wigner-Ville distribution (QWVD). The transform is constructed by substituting the Fourier transform kernel with the quaternion Fourier transform (QFT) kernel in the classical Wigner-Ville distribution definition. Based on the properties of quaternions and the QFT kernel we obtain three types of the QWVD. We discuss some useful properties of various definitions for the QWVD, which are extensions of the classical Wigner-Ville distribution properties.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] SAR Image Segmentation Based on the Two-dimensional Pseudo Wigner-Ville Distribution
    Liu Cong
    Li Yanjun
    Zhang Ke
    INTERNATIONAL CONFERENCE ON SPACE INFORMATION TECHNOLOGY 2009, 2010, 7651
  • [2] The Wigner-Ville distribution and the cross Wigner-Ville distribution of noisy signals
    Chen Guanhua
    Ma Shiwei
    Qin Tinghao
    Wang Jian
    Cao Jialin
    2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 231 - +
  • [3] Statistical Performance of the Wigner-Ville Distribution and the Cross Wigner-Ville Distribution
    陈光化
    曹家麟
    Journal of Shanghai University, 2003, (04) : 379 - 383
  • [5] Wigner-Ville distribution and cross Wigner-Ville distribution of noisy signals
    Chen Guanghua
    Ma Shiwei
    Liu Ming
    Zhu Jingming
    Zeng Weimin
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2008, 19 (05) : 1053 - 1057
  • [6] Statistical performance of Wigner-Ville distribution and windowed Wigner-Ville distribution
    Qui, Lunji
    IEEE Transactions on Signal Processing, 1993, 41 (11)
  • [7] Quaternion Wigner-Ville distribution associated with the linear canonical transforms
    Fan, Xiang-Li
    Kou, Kit Ian
    Liu, Ming-Sheng
    SIGNAL PROCESSING, 2017, 130 : 129 - 141
  • [8] Parametric quaternion Wigner-Ville distribution: definition, uncertainty principles, and application
    Chen, Jian-Yi
    Li, Bing-Zhao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [9] The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform
    El Kassimi, M.
    El Haoui, Y.
    Fahlaoui, S.
    ANALYSIS MATHEMATICA, 2019, 45 (04) : 787 - 802
  • [10] The Wigner-Ville Distribution Associated with the Quaternion Offset Linear Canonical Transform
    M. El Kassimi
    Y. El Haoui
    S. Fahlaoui
    Analysis Mathematica, 2019, 45 : 787 - 802