Model-Based Clustering of Temporal Data

被引:0
|
作者
El Assaad, Hani [1 ]
Same, Allou [1 ]
Govaert, Gerard [2 ]
Aknin, Patrice [1 ]
机构
[1] Univ Paris Est, IFSTTAR, GRETTIA, F-77420 Champs Sur Marne, France
[2] Univ Technol Compiegne, CNRS, UMR 7253, F-60205 Compiegne, France
关键词
Clustering; dynamic latent variable model; mixture model; EM algorithm; Kalman filter; time series clustering; maximum likelihood; maximum a posteriori; MAXIMUM-LIKELIHOOD;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of temporal data clustering using a dynamic Gaussian mixture model whose means are considered as latent variables distributed according to random walks. Its final objective is to track the dynamic evolution of some critical railway components using data acquired through embedded sensors. The parameters of the proposed algorithm are estimated by maximum likelihood via the Expectation-Maximization algorithm. In contrast to other approaches as the maximum a posteriori estimation in which the covariance matrices of the random walks have to be fixed by the user, the results of the simulations show the ability of the proposed algorithm to correctly estimate these covariances while keeping a low clustering error rate.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 50 条
  • [1] Dynamic model-based clustering for spatio-temporal data
    Lucia Paci
    Francesco Finazzi
    Statistics and Computing, 2018, 28 : 359 - 374
  • [2] Dynamic model-based clustering for spatio-temporal data
    Paci, Lucia
    Finazzi, Francesco
    STATISTICS AND COMPUTING, 2018, 28 (02) : 359 - 374
  • [3] Model-based clustering of longitudinal data
    McNicholas, Paul D.
    Murphy, T. Brendan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (01): : 153 - 168
  • [4] Boosting for model-based data clustering
    Saffari, Amir
    Bischof, Horst
    PATTERN RECOGNITION, 2008, 5096 : 51 - 60
  • [5] Model-based clustering for longitudinal data
    De la Cruz-Mesia, Rolando
    Quintanab, Fernando A.
    Marshall, Guillermo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1441 - 1457
  • [6] Model-based clustering with missing not at random data
    Sportisse, Aude
    Marbac, Matthieu
    Laporte, Fabien
    Celeux, Gilles
    Boyer, Claire
    Josse, Julie
    Biernacki, Christophe
    STATISTICS AND COMPUTING, 2024, 34 (04)
  • [7] Model-based clustering and classification of functional data
    Chamroukhi, Faicel
    Nguyen, Hien D.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (04)
  • [8] On model-based clustering of skewed matrix data
    Melnykov, Volodymyr
    Zhu, Xuwen
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 167 : 181 - 194
  • [9] Model-based Clustering and Classification for Data Science
    Unwin, Antony
    INTERNATIONAL STATISTICAL REVIEW, 2020, 88 (01) : 263 - 264
  • [10] Model-based clustering of array CGH data
    Shah, Sohrab P.
    Cheung, K-John, Jr.
    Johnson, Nathalie A.
    Alain, Guillaume
    Gascoyne, Randy D.
    Horsman, Douglas E.
    Ng, Raymond T.
    Murphy, Kevin P.
    BIOINFORMATICS, 2009, 25 (12) : I30 - I38