Investigations of Discharge Sustenance in a Dielectric Barrier-Based Microhollow Cathode

被引:1
|
作者
Lamba, Ram Prakash [1 ]
Hossain, Afaque M. [1 ,2 ]
Agarwal, Ajay [1 ]
Prakash, Ram [1 ,3 ]
机构
[1] CSIR, CEERI, Pilani 333031, Rajasthan, India
[2] Leibniz Inst Surface Engn IOM, D-04318 Leipzig, Germany
[3] IIT Jodhpur, Dept Phys, Jodhpur 342037, Rajasthan, India
关键词
Cathodes; Discharges (electric); Dielectrics; Cavity resonators; Anodes; Plasmas; Fault diagnosis; Dielectric barrier discharge (DBD); electron multiplication quotient (EMQ); microhollow cathode discharges (MHCDs); microplasmas; DEVICES; MODEL;
D O I
10.1109/TPS.2020.3025073
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, a microhollow cathode variant consisting of cylindrical cathode structure and a coaxial anode, with a layer of dielectric barrier on the inner wall of the cathode cavity, has been investigated. This arrangement allows the device to be operated at atmospheric pressure reaching electron densities up to 10(18) m(-3) in the microhollow cathode cavity. The discharge initiates from the narrow gap region between the cathode and the anode, followed by hollow cathode discharge. The presence of the anode in the discharge cavity causes the discharge electrons to be absorbed by the anode. A theoretical approach has been followed and it establishes a criterion for sustenance of this discharge in the microhollow cathode cavity. This criterion resulted from the fact that for discharge to be sustained in the hollow cathode cavity, the generation of electrons should be balanced by the absorption of electrons. Both these phenomena have been quantitatively explained by electron multiplication quotient and a multipass parameter for hollow cathode discharge has been evaluated.
引用
收藏
页码:3679 / 3685
页数:7
相关论文
共 50 条
  • [1] Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy
    Meyer, Cordula
    Demecz, Daniel
    Gurevich, Evgeny L.
    Marggraf, Ulrich
    Jestel, Guenter
    Franzke, Joachim
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2012, 27 (04) : 677 - 681
  • [2] Microhollow Cathode Discharge Reactor Chemistry
    David D. Hsu
    David B. Graves
    Plasma Chemistry and Plasma Processing, 2005, 25 : 1 - 17
  • [3] Microhollow cathode discharge excimer lamps
    Schoenbach, KH
    El-Habachi, A
    Moselhy, MM
    Shi, WH
    Stark, RH
    PHYSICS OF PLASMAS, 2000, 7 (05) : 2186 - 2191
  • [4] Microhollow cathode discharge reactor chemistry
    Hsu, DD
    Graves, DB
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2005, 25 (01) : 1 - 17
  • [5] Computer simulation of microhollow cathode discharge
    Gu, Xiao-Wei
    Meng, Lin
    Li, Jia-Yin
    Sun, Yi-Qin
    Yu, Xin-Hua
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2009, 38 (02): : 236 - 239
  • [6] Performance of microhollow cathode discharge thruster
    Xia G.
    Mao G.
    Chen M.
    Sun A.
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2010, 22 (05): : 1145 - 1148
  • [7] Characteristics of direct current microhollow cathode discharges combined with dielectric barrier discharges as preionizer
    Watanabe, Jun
    Ogino, Akihisa
    Nagatsu, Masaaki
    APPLIED PHYSICS LETTERS, 2007, 91 (22)
  • [8] Diagnostics of a microhollow cathode discharge at atmospheric pressure
    周晨
    李玥颖
    俞鸷
    姚静锋
    袁承勋
    周忠祥
    Plasma Science and Technology, 2021, 23 (06) : 7 - 15
  • [9] Microhollow cathode discharge stability with flow and reaction
    Hsu, DD
    Graves, DB
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (23) : 2898 - 2907
  • [10] Numerical study on rectangular microhollow cathode discharge
    He, Shoujie
    Ouyang, Jiting
    He, Feng
    Li, Shang
    PHYSICS OF PLASMAS, 2011, 18 (03)