Automated parameter determination of advanced constitutive models

被引:0
|
作者
Rahman, Syed M. [1 ]
Hassan, Tasnim [1 ]
Ranjithan, S. Ranji [1 ]
机构
[1] N Carolina State Univ, Dept Civil Construct & Environm Engn, Raleigh, NC 27695 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Parameter determination of advanced cyclic plasticity models which are developed for simulation of cyclic stress-strain and ratcheting responses is complex. This is mainly because of the large number of model parameters which are interdependent and three or more experimental responses are used in parameter determination. Hence the manual trial and error approach becomes quite tedious and time consuming for determining a reasonable set of parameters. Moreover, manual parameter determination for an advanced plasticity model requires in-depth knowledge of the model and experience with its parameter determination. These are few of the primary reasons for advanced cyclic plasticity models not being widely used for analysis and design of fatigue critical structures. These problems could be overcome through developing an automated parameter optimization system using heuristic search technique (e.g. genetic algorithm). This paper discusses the development of such an automatic parameter determination scheme for improved Chaboche model developed by Bari and Hassan [4]. A new stepped GA optimization approach which is found to be more efficient over the conventional GA approach in terms of fitness quality and optimization time is presented.
引用
收藏
页码:261 / 272
页数:12
相关论文
共 50 条
  • [1] An automated system for simulation and parameter identification of inelastic constitutive models
    Furukawa, T
    Sugata, T
    Yoshimura, S
    Hoffman, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (21-22) : 2235 - 2260
  • [2] Automated Parameter Determination for IC Engine Simulation Models
    Pirker, Gerhard
    Chmela, Franz
    Wimmer, Andreas
    SAE INTERNATIONAL JOURNAL OF ENGINES, 2009, 2 (01) : 539 - 547
  • [3] Interactive software for material parameter characterization of advanced engineering constitutive models
    Saleeb, AF
    Marks, JR
    Wilt, TE
    Arnold, SM
    ADVANCES IN ENGINEERING SOFTWARE, 2004, 35 (06) : 383 - 398
  • [4] Mechanistic procedure for parameter determination of multiplicative decomposition based constitutive models
    Villani, M. M.
    Kasbergen, C.
    Scarpas, A.
    Lo Presti, D.
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2017, 18 (05) : 391 - 403
  • [5] Automated calibration of advanced soil constitutive models. Part I: hypoplastic sand
    Kadlicek, Tomas
    Janda, Tomas
    Sejnoha, Michal
    Masin, David
    Najser, Jan
    Benes, Stepan
    ACTA GEOTECHNICA, 2022, 17 (08) : 3421 - 3438
  • [6] Automated calibration of advanced soil constitutive models. Part I: hypoplastic sand
    Tomáš Kadlíček
    Tomáš Janda
    Michal Šejnoha
    David Mašín
    Jan Najser
    Štěpán Beneš
    Acta Geotechnica, 2022, 17 (8) : 3421 - 3438
  • [7] Rapid Implementation of Advanced Constitutive Models
    Starman, Bojan
    Halilovic, Miroslav
    Vrh, Marko
    Stok, Boris
    NUMISHEET 2014: THE 9TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES: PART A BENCHMARK PROBLEMS AND RESULTS AND PART B GENERAL PAPERS, 2013, 1567 : 488 - 491
  • [8] On the Study of Constitutive Parameter Identification of Advanced Yield Criteria
    Aydin, M. -S.
    Canpolat, A.
    Gerlach, J.
    Kessler, L.
    Tekkaya, A. E.
    SHEET METAL 2011, 2011, 473 : 452 - +
  • [9] Application of Advanced Constitutive Models to the Simulation of Machining
    Miller, David A.
    Chen, Cameron K.
    IMECE2009, VOL 4, 2010, : 7 - 8
  • [10] A multi-step calibration strategy for reliable parameter determination of salt rock mechanics constitutive models
    Honorio, Herminio T.
    Houben, Maartje
    Bisdom, Kevin
    van der Linden, Arjan
    de Borst, Karin
    Sluys, Lambertus J.
    Hajibeygi, Hadi
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2024, 183