A granular extension of the fuzzy-ARTMAP (FAM) neural classifier based on fuzzy lattice reasoning (FLR)

被引:28
|
作者
Kaburlasos, Vassilis G. [1 ]
Papadakis, S. E. [1 ]
机构
[1] Technol Educ Inst Kovala, Dept Ind Informat, GR-65404 Kavala, Greece
关键词
Digital image histogram; Fuzzy-ARTMAP (FAM); Fuzzy lattice reasoning (FLR); Granular computing; Industrial classification application; MORPHOLOGICAL ASSOCIATIVE MEMORIES; ADAPTIVE PATTERN-CLASSIFICATION; SYSTEM FIS ANALYSIS; PARALLEL; DESIGN; ARCHITECTURE; NETWORKS; KERNEL;
D O I
10.1016/j.neucom.2008.06.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The fuzzy lattice reasoning (FLR) classifier was introduced lately as an advantageous enhancement of the fuzzy-ARTMAP (FAM) neural classifier in the Euclidean space R-N. This work extends FLR to space F-N. where F is the granular data domain of fuzzy interval numbers (FINs) including (fuzzy) numbers, intervals, and cumulative distribution functions. Based on a fundamentally improved mathematical notation this work proposes novel techniques for dealing, rigorously, with imprecision in practice. We demonstrate a favorable comparison of our proposed techniques with alternative techniques from the literature in an industrial prediction application involving digital images represented by histograms. Additional advantages of our techniques include a capacity to represent statistics of all orders by a FIN, an introduction of tunable (sigmoid) nonlinearities, a capacity for effective data processing without any data normalization, an induction of descriptive decision-making knowledge (rules) from the training data, and the potential for input variable selection. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2067 / 2078
页数:12
相关论文
共 50 条
  • [1] The fuzzy lattice reasoning (FLR) classifier for mining environmental data
    Athanasiadis, Ioannis N.
    Computational Intelligence Based on Lattice Theory, 2007, 67 : 175 - 193
  • [2] Fault Classification in Power Distribution Systems Using Multiresolution Analysis and a Fuzzy-ARTMAP Neural NetworkAnalysis and a Fuzzy-ARTMAP Neural Network
    Bernardes, H. R. S.
    Tonelli-Neto, M. S.
    Minussi, C. R.
    IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (11) : 1824 - 1831
  • [3] FUZZY LATTICE REASONING (FLR) CLASSIFIER FOR HUMAN FACIAL EXPRESSION RECOGNITION
    Papadakis, S. E.
    Kaburlasos, V. G.
    Papakostas, G. A.
    UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 633 - 638
  • [4] Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation
    Kaburlasos, Vassilis G.
    Athanasiadis, Ioannis N.
    Mitkas, Pericles A.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2007, 45 (01) : 152 - 188
  • [5] Fuzzy lattice reasoning (FLR) type neural computation for weighted graph partitioning
    Kaburlasos, Vassilis G.
    Moussiades, Lefteris
    Vakali, Athena
    NEUROCOMPUTING, 2009, 72 (10-12) : 2121 - 2133
  • [6] Winter wheat identification based on MODIS data and Fuzzy-ARTMAP
    Nongye Gongcheng Xuebao, 2008, 3 (173-178):
  • [7] Air quality assessment using Fuzzy Lattice Reasoning (FLR)
    Athanasiadis, Ioannis N.
    Kaburlasos, Vassilis G.
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 29 - +
  • [8] RBF Fuzzy-Artmap: A new fuzzy neural network for robust on-line learning and identification of patterns
    Tontini, G
    deQueiroz, AA
    INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 1364 - 1369
  • [9] Multinodal load forecasting for distribution systems using a fuzzy-artmap neural network
    Abreu, Thays
    Amorim, Aline J.
    Santos-Junior, Carlos R.
    Lotufo, Anna D. P.
    Minussi, Carlos R.
    APPLIED SOFT COMPUTING, 2018, 71 : 307 - 316
  • [10] Fuzzy lattice reasoning (FLR) classification using similarity measures
    Cripps, Al
    Nguyen, Nghiep
    COMPUTATIONAL INTELLIGENCE BASED ON LATTICE THEORY, 2007, 67 : 263 - +