Complex Pisot numbers in algebraic number fields

被引:13
|
作者
Bertin, Marie Jose [1 ,2 ]
Zaimi, Toufik [1 ,2 ]
机构
[1] Univ Paris 06, F-75005 Paris, France
[2] Al Imam Mohammed Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 11623, Saudi Arabia
关键词
D O I
10.1016/j.crma.2015.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P(K) be the set of Pisot numbers generating a real algebraic number field K over the field of rationals Q. Then, a result of Meyer implies that P(K) is relatively dense in the interval [1, infinity) and a theorem of Pisot gives that P(K) contains units, whenever K not equal Q. In the present note, we prove analogous results for the set of complex Pisot numbers generating a non-real number field K' over Q when K' is neither a quadratic field nor a CM-field. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:965 / 967
页数:3
相关论文
共 50 条