New characterizations of discrete classical orthogonal polynomials

被引:0
|
作者
Kwon, KH
Lee, DW
Park, SB
机构
[1] Department of Mathematics, Korea Adv. Inst. of Sci. and T., Taejon 305-701, 373-1 Kusong-dong, Yusong-ku
关键词
D O I
10.1006/jath.1996.3028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if both {P-n(x)}(n=0)(infinity) and {del(r)P(n)(x)}(n=r)(infinity) are orthogonal polynomials for any fixed integer r greater than or equal to 1, then {P-n(x)}(n=0)(infinity) must be discrete classical orthogonal polynomials. This result is a discrete version of the classical Hahn's theorem stating that if both {P-n(x)}(n=0)(infinity) and {(d/dx)P-r(n)(x)}(n=r)(infinity) are orthogonal polynomials, then {P-n(x)}(n=0)(infinity) are classical orthogonal polynomials. We also obtain several other characterizations of discrete classical orthogonal polynomials. (C) 1997 Academic Press.
引用
收藏
页码:156 / 171
页数:16
相关论文
共 50 条
  • [1] New characterizations of classical orthogonal polynomials
    Kwon, KH
    Littlejohn, LL
    Yoo, BH
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 199 - 213
  • [2] Discrete classical orthogonal polynomials
    Kwon, KH
    Lee, DW
    Park, SB
    Yoo, BH
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 1998, 4 (02) : 145 - 162
  • [3] Characterizations of classical orthogonal polynomials on quadratic lattices
    Sandjon, Marlyse Njinkeu
    Branquinho, Amilcar
    Foupouagnigni, Mama
    Area, Ivan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (06) : 983 - 1002
  • [4] Discrete classical orthogonal polynomials and interferometry
    Perinová, V
    Luks, A
    COMMUNICATIONS IN DIFFERENCE EQUATIONS, 2000, : 311 - 325
  • [5] On Non-linear Characterizations of Classical Orthogonal Polynomials
    Sadjang, P. Njionou
    Sawalda, D. Kalda
    Mboutngam, S.
    Foupouagnigni, M.
    Koepf, W.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [6] Some characterizations of Dunkl-classical orthogonal polynomials
    Bouras, B.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (08) : 1240 - 1257
  • [7] On Non-linear Characterizations of Classical Orthogonal Polynomials
    P. Njionou Sadjang
    D. Kalda Sawalda
    S. Mboutngam
    M. Foupouagnigni
    W. Koepf
    Mediterranean Journal of Mathematics, 2023, 20
  • [8] Classical symmetric orthogonal polynomials of a discrete variable
    Area, I
    Godoy, E
    Ronveaux, A
    Zarzo, A
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (01) : 1 - 12
  • [9] Discrete semi-classical orthogonal polynomials
    Marcellán, F
    Salto, L
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 1998, 4 (05) : 463 - 496
  • [10] ZEROS OF CLASSICAL ORTHOGONAL POLYNOMIALS OF A DISCRETE VARIABLE
    Area, Ivan
    Dimitrov, Dimitar K.
    Godoy, Eduardo
    Paschoa, Vanessa G.
    MATHEMATICS OF COMPUTATION, 2013, 82 (282) : 1069 - 1095