N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics

被引:47
|
作者
Wang, Tao [1 ,2 ]
Xue, Lu [3 ,4 ]
Liu, Yonghong [2 ]
Zhang, Lu [1 ]
Xing, Baoshan [5 ]
机构
[1] Chinese Acad Sci, Nanjing Inst Geog & Limnol, State Key Lab Lake Sci & Environm, Nanjing 210008, Peoples R China
[2] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Peoples R China
[3] Chinese Acad Sci, Inst Hydrobiol, Wuhan 430072, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Univ Massachusetts, Stockbridge Sch Agr, Amherst, MA 01003 USA
基金
中国国家自然科学基金;
关键词
N self-doped hierarchically porous adsorbent; Adsorption; Tetracyclines; Nuclear magnetic resonance (NMR) spectroscopy; DFT calculations; ONE-STEP SYNTHESIS; ADSORPTION PROPERTIES; GRAPHENE; MECHANISM; BIOCHAR; SORPTION; H3PO4; WATER;
D O I
10.1016/j.scitotenv.2022.153567
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, we developed a simple strategy to synthesize a N self-doped hierarchically porous carbon adsorbent (LPC-NC) derived from biomass using potassium oxalate monohydrate and calcium carbonate and remove tetracyclines that are major antibiotics frequently measured in surface water. In the pyrolysis process, the N-enriching lotus seed pots biomass decomposed and formed a porous carbon matrix with self-doped N. The LPC-NC displayed high adsorption amount (506.6 mg/g for tetracycline (TTC) and 445.3 mg/g for oxytetracycline (OTC)), short equilibrium time (30 min) and stable reusability (the decline efficiency<8.0% after five cycles). Batch adsorption experimental and the-oretical studies showed that the high adsorption capacity of LPC-NC for tetracyclines was mainly ascribed to the self-doped pyridinic-N species and the adsorption capacity of pyridinic-N species at the edge location was better than that of pyridinic-N species at the vacancy location. Importantly, we believe that the high adsorption performance of LPC-NC for tetracyclines is due to the activation of carbon pi electrons by destroying the integrity of conjugation on LPC-NC, thus enhancing the pi-pi interaction between LPC-NC and tetracyclines. In addition, the results of solid-state nuclear magnetic resonance (NMR) confirmed that the hierarchically porous structure of LPC-NC was conducive to the adsorption of tetracyclines. These insights provide new ideas for the rational design of N-doped carbon-based adsorbents for the efficient removal of tetracyclines.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors
    Hou, Lijie
    Hu, Zhongai
    Wang, Xiaotong
    Qiang, Lulu
    Zhou, Yi
    Lv, Liwen
    Li, Shanshan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 540 : 88 - 96
  • [2] Honeycomb-like hierarchically porous carbon derived from waste biomass cork for efficient tetracycline removal
    Zhang, Jizhao
    Wang, Qihang
    Li, Chengyu
    He, Danwei
    Mu, Jun
    Meitan Xuebao/Journal of the China Coal Society, 2024, 49 (10): : 4263 - 4275
  • [3] Biomass derived N/O self-doped porous carbon for advanced supercapacitor electrodes
    Tian, Wenhui
    Ren, Penggang
    Hou, Xin
    Guo, Zhengzheng
    Xue, Runzhuo
    Chen, Zhengyan
    Jin, Yanling
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 202
  • [4] Seaweed-Derived Hierarchically Porous Carbon for Highly Efficient Removal of Tetracycline
    Qin, Wen-xiu
    Sun, Na
    Wang, Guo-zhong
    Zhang, Hai-min
    Zhang, Yun-xia
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2022, 35 (03) : 578 - 588
  • [5] Self-Templated Synthesis of Hierarchically Porous N-Doped Carbon Derived from Biomass for Supercapacitors
    Wang, Yameng
    Liu, Ting
    Lin, Xiangjun
    Chen, Heng
    Chen, Shuai
    Jiang, Zhongjie
    Chen, Yan
    Liu, Jiang
    Huang, Jianlin
    Liu, Meilin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (11): : 13932 - 13939
  • [6] Nitrogen-doped hierarchically porous carbon derived from biomass for efficient capture of iodine
    Fu, Weiyang
    Hu, Guocheng
    Song, Weihao
    Dou, Meiling
    Wang, Feng
    APPLIED SURFACE SCIENCE, 2025, 682
  • [7] Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal
    Shi, Qiyu
    Wang, Wangbo
    Zhang, Hongmin
    Bai, Huiling
    Liu, Kaiqiang
    Zhang, Jianfeng
    Li, Zhihua
    Zhu, Weihuang
    BIORESOURCE TECHNOLOGY, 2023, 383
  • [8] Removal of Antibiotics from Aqueous Solutions by a Carbon Adsorbent Derived from Protein-Waste-Doped Biomass
    Yu, Jiamin
    Kang, Yan
    Yin, Wenjun
    Fan, Jinlin
    Guo, Zizhang
    ACS OMEGA, 2020, 5 (30): : 19187 - 19193
  • [9] Biomass-derived N/S dual-doped hierarchically porous carbon material as effective adsorbent for the removal of bisphenol F and bisphenol S
    Wang, Tao
    Xue, Lu
    Zheng, Lewen
    Bao, Shaopan
    Liu, Yonghong
    Fang, Tao
    Xing, Baoshan
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 416
  • [10] Biomass-derived nitrogen self-doped porous carbon for high performance supercapacitors
    Shen, Feng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256