Non-uniqueness and h-Principle for Holder-Continuous Weak Solutions of the Euler Equations

被引:84
|
作者
Daneri, Sara [1 ]
Szekelyhidi, Laszlo, Jr. [2 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
[2] Univ Leipzig, Inst Math, D-04009 Leipzig, Germany
基金
欧洲研究理事会;
关键词
INCOMPRESSIBLE EULER; FLOWS;
D O I
10.1007/s00205-017-1081-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we address the Cauchy problem for the incompressible Euler equations in the periodic setting. We prove that the set of Holder wild initial data is dense in , where we call an initial datum wild if it admits infinitely many admissible Holder weak solutions. We also introduce a new set of stationary flows which we use as a perturbation profile instead of Beltrami flows in order to show that a general form of the h-principle applies to Holder-continuous weak solutions of the Euler equations. Our result indicates that in a deterministic theory of three dimensional turbulence the Reynolds stress tensor can be arbitrary and need not satisfy any additional closure relation.
引用
收藏
页码:471 / 514
页数:44
相关论文
共 50 条
  • [1] Non-uniqueness and h-Principle for Hölder-Continuous Weak Solutions of the Euler Equations
    Sara Daneri
    László Székelyhidi
    Archive for Rational Mechanics and Analysis, 2017, 224 : 471 - 514
  • [2] On Non-uniqueness of Continuous Entropy Solutions to the Isentropic Compressible Euler Equations
    Vikram Giri
    Hyunju Kwon
    Archive for Rational Mechanics and Analysis, 2022, 245 : 1213 - 1283
  • [3] On Non-uniqueness of Continuous Entropy Solutions to the Isentropic Compressible Euler Equations
    Giri, Vikram
    Kwon, Hyunju
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 245 (02) : 1213 - 1283
  • [4] Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations
    Chiodaroli, Elisabetta
    Kreml, Ondrej
    NONLINEARITY, 2018, 31 (04) : 1441 - 1460
  • [5] NON-UNIQUENESS OF ADMISSIBLE WEAK SOLUTIONS TO THE COMPRESSIBLE EULER EQUATIONS WITH SMOOTH INITIAL DATA
    Chiodaroli, Elisabetta
    Kreml, Ondrej
    Macha, Vaclav
    Schwarzacher, Sebastian
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (04) : 2269 - 2295
  • [6] Non-uniqueness for the Euler equations: the effect of the boundary
    Bardos, C.
    Szekelyhidi, L., Jr.
    Wiedemann, E.
    RUSSIAN MATHEMATICAL SURVEYS, 2014, 69 (02) : 189 - 207
  • [7] Non-uniqueness of admissible weak solutions to compressible Euler systems with source terms
    Luo, Tianwen
    Xie, Chunjing
    Xin, Zhouping
    ADVANCES IN MATHEMATICS, 2016, 291 : 542 - 583
  • [8] Non-uniqueness of weak solutions to 3D magnetohydrodynamic equations
    Li, Yachun
    Zeng, Zirong
    Zhang, Deng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 165 : 232 - 285
  • [9] Non-uniqueness of admissible weak solutions to the two-dimensional pressureless Euler system
    Huang, Feimin
    Shi, Jiajin
    Wang, Yi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 418 : 238 - 257
  • [10] Non-uniqueness for the compressible Euler-Maxwell equations
    Mao, Shunkai
    Qu, Peng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)