Joint Spectrum Sensing of Wideband Frequency and Angular Spectrum based on Sub-Nyquist Sampling

被引:0
|
作者
Haniz, Azril [1 ]
Matsumura, Takeshi [1 ]
Kojima, Fumihide [1 ]
机构
[1] Natl Inst Informat & Commun Technol, Wireless Syst Lab, Yokohama, Kanagawa, Japan
关键词
Compressive sensing; Spectrum sensing; Angle-of-arrival estimation; 5G; Beyond; Emulator; Cyber-physical system; DOA;
D O I
10.1109/WPMC52694.2021.9700415
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Advanced spectrum sharing technology for future 5G and Beyond 5G (B5G) networks have the potential to achieve higher spectrum utilization efficiency by utilizing knowledge of the carrier frequency and angle-of-arrival (AOA) of the signals emitted from multiple base stations. In this paper, an algorithm to perform wideband spectrum sensing along the frequency and angular domains simultaneously utilizing sub-Nyquist analog-to-digital converters (ADC) is proposed. The proposed algorithm is developed based on the conventional multi-coset sampling (MCS) algorithm in order to support AOA estimation, and is expressed as a typical compressive sensing problem. Spectrum sensing performance is evaluated using Monte Carlo simulation, and results show that it can successfully sense the wideband two-dimensional spectrum without the need for high-rate ADCs.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Wideband Spectrum Sensing Based on Sub-Nyquist Sampling
    Yen, Chia-Pang
    Tsai, Yingming
    Wang, Xiaodong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (12) : 3028 - 3040
  • [2] Predecision for Wideband Spectrum Sensing With Sub-Nyquist Sampling
    Xiong, Tianyi
    Li, Hongbin
    Qi, Peihan
    Li, Zan
    Zheng, Shilian
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (08) : 6908 - 6920
  • [3] Wideband spectrum sensing based on advanced sub-Nyquist sampling structure
    Wang, Xue
    Chen, Qian
    Jia, Min
    Gu, Xuemai
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [4] Wideband spectrum sensing based on advanced sub-Nyquist sampling structure
    Xue Wang
    Qian Chen
    Min Jia
    Xuemai Gu
    EURASIP Journal on Advances in Signal Processing, 2022
  • [5] Wideband Spectrum Sensing With Sub-Nyquist Sampling in Cognitive Radios
    Sun, Hongjian
    Chiu, Wei-Yu
    Jiang, Jing
    Nallanathan, Arumugam
    Poor, H. Vincent
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 6068 - 6073
  • [6] Wideband Spectrum Sensing using Sub-Nyquist Sampling Approaches
    Raghavendra, P. H.
    Thejaswini, R. S. Saundharya
    Venugopal, Kaavya
    Kumar, Preethish M.
    Niveditha, J.
    Sure, Pallaviram
    2020 IEEE 3RD 5G WORLD FORUM (5GWF), 2020, : 69 - 74
  • [7] Wideband Power Spectrum Sensing Using Sub-Nyquist Sampling
    Ariananda, Dyonisius Dony
    Leus, Geert
    SPAWC 2011: 2011 IEEE 12TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 2011, : 101 - 105
  • [8] Eigenvector Based Wideband Spectrum Sensing with Sub-Nyquist Sampling for Cognitive Radio
    Chandrasekhar, K.
    Hamsapriye
    Ingale, V. D.
    Moorthy, S. G. T.
    Lakshmeesha, K. V.
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2017, 76 (09): : 535 - 539
  • [9] Multiantenna-Assisted Wideband Spectrum Sensing Based on Sub-Nyquist Sampling
    Wang, Jilin
    Li, Qing
    Duan, Huiping
    Fang, Jun
    Ren, Zhi
    Li, Hongbin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (04) : 795 - 799
  • [10] RECENT ADVANCES ON SUB-NYQUIST SAMPLING-BASED WIDEBAND SPECTRUM SENSING
    Fang, Jun
    Wang, Bin
    Li, Hongbin
    Liang, Ying-Chang
    IEEE WIRELESS COMMUNICATIONS, 2021, 28 (03) : 115 - 121