Sticky reflecting Ornstein-Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound

被引:13
|
作者
Nie, Yutian [1 ]
Linetsky, Vadim [1 ]
机构
[1] Northwestern Univ, McCormick Sch Engn & Appl Sci, Dept Ind Engn & Management Sci, 2145 Sheridan Rd, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Sticky reflecting diffusion; Ornstein-Uhlenbeck process; interest rate models; zero lower bound; STOCHASTIC DIFFERENTIAL-EQUATIONS; EIGENFUNCTION-EXPANSIONS; OPTIONS;
D O I
10.1080/15326349.2019.1630287
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article studies Ornstein-Uhlenbeck (OU) diffusions with sticky reflection at zero. Sticky reflecting OU diffusions are defined as weak solutions of a system of SDEs involving the local time at the boundary at zero. The transition semigroup and the distribution of the first hitting time up are characterized analytically via their spectral representations. The results are applied to the Vasicek interest rate model with the sticky zero lower bound, where the interest rate follows a sticky reflecting behavior at zero, with the stickiness parameter explicitly controlling how fast the interest rate leaves the zero lower bound.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 46 条
  • [1] Skew Ornstein-Uhlenbeck processes with sticky reflection and their applications to bond pricing
    Song, Shiyu
    Xu, Guangli
    JOURNAL OF APPLIED PROBABILITY, 2024, 61 (04) : 1172 - 1195
  • [2] Interest rate model in uncertain environment based on exponential Ornstein-Uhlenbeck equation
    Sun, Yiyao
    Yao, Kai
    Fu, Zongfei
    SOFT COMPUTING, 2018, 22 (02) : 465 - 475
  • [3] An Uncertain Exponential Ornstein-Uhlenbeck Interest Rate Model with Uncertain CIR Volatility
    Mehrdoust, Farshid
    Najafi, Ali Reza
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (05) : 1405 - 1420
  • [4] A GENERAL LOWER BOUND OF PARAMETER ESTIMATION FOR REFLECTED ORNSTEIN-UHLENBECK PROCESSES
    Zang, Qing-Pei
    Zhang, Li-Xin
    JOURNAL OF APPLIED PROBABILITY, 2016, 53 (01) : 22 - 32
  • [5] Barrier option pricing with floating interest rate based on uncertain exponential Ornstein-Uhlenbeck model
    Zhou, Shaoling
    Chai, Huixin
    Wang, Xiaosheng
    AIMS MATHEMATICS, 2024, 9 (09): : 25809 - 25833
  • [6] A positive interest rate model with sticky barrier
    Kabanov, Yuri
    Kijima, Masaaki
    Rinaz, Sofiane
    QUANTITATIVE FINANCE, 2007, 7 (03) : 269 - 284
  • [7] A LOWER BOUND FOR THE FIRST PASSAGE TIME DENSITY OF THE SUPRATHRESHOLD ORNSTEIN-UHLENBECK PROCESS
    Thomas, Peter J.
    JOURNAL OF APPLIED PROBABILITY, 2011, 48 (02) : 420 - 434
  • [8] OPTIMAL DIVIDENDS IN AN ORNSTEIN-UHLENBECK TYPE MODEL WITH CREDIT AND DEBIT INTEREST
    Cai, Jun
    Gerber, Hans
    Yang, Hailiang
    NORTH AMERICAN ACTUARIAL JOURNAL, 2006, 10 (02) : 94 - 108
  • [9] Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate
    Eisenberg, Julia
    Kremsner, Stefan
    Steinicke, Alexander
    MATHEMATICS, 2021, 9 (18)
  • [10] Interest rate rules in an estimated sticky price model
    Rotemberg, JJ
    Woodford, M
    MONETARY POLICY RULES, 1999, : 57 - 126