Highly accurate eigenvalues for the distorted Coulomb potential

被引:23
|
作者
Ixaru, LG
De Meyer, H
Vanden Berghe, G
机构
[1] State Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
[2] Inst Phys & Nucl Engn, Dept Theoret Phys, R-76900 Bucharest, Romania
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 03期
关键词
D O I
10.1103/PhysRevE.61.3151
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the eigenvalue problem for the radial Schrodinger equation with potentials of the form V(r) =S(r)/r+R(r) where S(r) and R(r) are well behaved functions which tend to some (not necessarily equal) constants when r-->0 and r-->infinity. Formulas (14.4.5)-(14.4.8) of Abramowitz and Stegun [Handbook of Mathematical Functions, 8th ed. (Dover, New York, 1972)], corresponding to the pure Coulomb case, are here generalized for this distorted case. We also present a complete procedure for the numerical solution of the problem. Our procedure is robust, very economic and particularly suited for very large n. Numerical illustrations for n up to 2000 are given.
引用
收藏
页码:3151 / 3159
页数:9
相关论文
共 50 条