Phase equilibrium modeling for binary systems containing CO2 using artificial neural networks

被引:0
|
作者
Atashrouz, S. [1 ]
Mirshekar, H. [1 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Chem Engn, Mahshahr, Iran
来源
BULGARIAN CHEMICAL COMMUNICATIONS | 2014年 / 46卷 / 01期
关键词
vapor liquid equilibria; carbon dioxide; modeling; artificial neural network; supercritical fluid extraction; refrigerant; VAPOR-LIQUID-EQUILIBRIA; PLUS CARBON-DIOXIDE; ETHYL CAPRYLATE; CRITICAL-POINTS; ESSENTIAL OIL; VLE DATA; TEMPERATURES; PREDICTION; PRESSURES; MIXTURES;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, two mathematical models based on the Feed-Forward Back Propagation Artificial Neural Network (FFBP-ANN) are employed for the prediction of CO2 mole fraction in liquid (x(1)) and vapor (y(1)) phases in the Vapor Liquid Equilibrium (VLE) for fifty-six CO2-containing binary mixtures. 2104 data sets from the open literature have been used to construct the models. Furthermore, some new experimental data (not applied in ANN training) have been used to examine the reliability of the model. Predictions using ANN were compared with available literature data and the results confirm that there is a reasonable conformity between the predicted values and the experimental data. The average absolute deviation percent (AAD (%)) for ANN model I (x(1) prediction) and ANN model II (y(1) prediction) are 1.572 and 0.848 respectively. The study shows that the neural network model is a good alternative method for the estimation of phase equilibrium properties for this type of mixtures.
引用
收藏
页码:104 / 116
页数:13
相关论文
共 50 条
  • [1] Phase equilibrium of PVAc CO2 binary systems and PVAc CO2 + ethanol ternary systems
    Zhu, Teng
    Gong, Houjian
    Dong, Mingzhe
    Yang, Zehao
    Guo, Chunqing
    Liu, Mei
    FLUID PHASE EQUILIBRIA, 2018, 458 : 264 - 271
  • [2] Modeling the performance of cold plasma in CO2 splitting using artificial neural networks
    Nazari, Roshanak Rafiei
    Hajizadeh, Kobra
    AIP ADVANCES, 2022, 12 (08)
  • [3] Fluid-Phase Equilibrium Experiments and Modeling for CO2 + C6 Binary Systems
    Sima, Sergiu
    Secuianu, Catinca
    Nichita, Dan Vladimir
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2024, 69 (10): : 3555 - 3565
  • [4] Hydrate phase equilibrium of binary guest-mixtures containing CO2 and N2 in various systems
    Sun, Shi-Cai
    Liu, Chang-Ling
    Meng, Qing-Guo
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2015, 84 : 1 - 6
  • [5] Prediction of phase equilibrium of CO2/cyclic compound binary mixtures using a rigorous modeling approach
    Mesbah, Mohammad
    Soroush, Ebrahim
    Shokrollahi, Amin
    Bahadori, Alireza
    JOURNAL OF SUPERCRITICAL FLUIDS, 2014, 90 : 110 - 125
  • [6] Prediction of Equilibrium Conditions for Hydrate Formation in Binary Gaseous Systems Using Artificial Neural Networks
    Moradi, M. R.
    Nazari, K.
    Alavi, S.
    Mohaddesi, M.
    ENERGY TECHNOLOGY, 2013, 1 (2-3) : 171 - 176
  • [7] Phase equilibrium modeling of gas hydrate systems for CO2 capture
    Herslund, Peter Jorgensen
    Thomsen, Kaj
    Abildskov, Jens
    von Solms, Nicolas
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2012, 48 : 13 - 27
  • [8] Calculation of Solid-Liquid-Gas Equilibrium for Binary Systems Containing CO2
    Hong, Jindui
    Chen, Hui
    Li, Jun
    Matos, Henrique A.
    de Azevedo, Edmundo Gomes
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (09) : 4579 - 4586
  • [9] Predicting CO2 equilibrium solubility in various amine-CO2 systems using an artificial neural network model
    Wahyudi, Apri
    Suriyapraphadilok, Uthaiporn
    ENERGY AND AI, 2024, 18
  • [10] Prediction of vapor-liquid equilibrium for binary systems containing HFEs by using artificial neural network
    Urata, S
    Takada, A
    Murata, J
    Hiaki, T
    Sekiya, A
    FLUID PHASE EQUILIBRIA, 2002, 199 (1-2) : 63 - 78