Bayesian hidden Markov models for dependent large-scale multiple testing

被引:11
|
作者
Wang, Xia [1 ]
Shojaie, Ali [2 ]
Zou, Jian [3 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[3] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
基金
美国国家科学基金会;
关键词
Bayesian hierarchical model; Dirichlet mixture process prior; False discovery rate; Hidden Markov model; Multiple hypotheses testing; FALSE DISCOVERY RATE; INFERENCE; NUMBER;
D O I
10.1016/j.csda.2019.01.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An optimal and flexible multiple hypotheses testing procedure is constructed for dependent data based on Bayesian techniques, aiming at handling two challenges, namely dependence structure and non-null distribution specification. Ignoring dependence among hypotheses tests may lead to loss of efficiency and bias in decision. Misspecification in the non-null distribution, on the other hand, can result in both false positive and false negative errors. Hidden Markov models are used to accommodate the dependence structure among the tests. Dirichlet mixture process prior is applied on the non-null distribution to overcome the potential pitfalls in distribution misspecification. The testing algorithm based on Bayesian techniques optimizes the false negative rate (FNR) while controlling the false discovery rate (FDR). The procedure is applied to pointwise and clusterwise analysis. Its performance is compared with existing approaches using both simulated and real data examples. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:123 / 136
页数:14
相关论文
共 50 条
  • [1] Large-scale dependent multiple testing via hidden semi-Markov models
    Wang, Jiangzhou
    Wang, Pengfei
    COMPUTATIONAL STATISTICS, 2024, 39 (03) : 1093 - 1126
  • [2] Large-scale dependent multiple testing via hidden semi-Markov models
    Jiangzhou Wang
    Pengfei Wang
    Computational Statistics, 2024, 39 : 1093 - 1126
  • [3] Large-scale multiple testing via multivariate hidden Markov models
    Hou, Zhiqiang
    Wang, Pengfei
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (04) : 1932 - 1951
  • [4] Large-scale dependent multiple testing via higher-order hidden Markov models
    Li, Canhui
    Wang, Jiangzhou
    Wang, Pengfei
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2024,
  • [5] Semi-parametric hidden Markov model for large-scale multiple testing under dependency
    Kim, Joungyoun
    Lim, Johan
    Lee, Jong Soo
    STATISTICAL MODELLING, 2024, 24 (04) : 320 - 343
  • [6] Large-scale multiple testing in genome-wide association studies via region-specific hidden Markov models
    Xiao, Jian
    Zhu, Wensheng
    Guo, Jianhua
    BMC BIOINFORMATICS, 2013, 14
  • [7] Large-scale multiple testing in genome-wide association studies via region-specific hidden Markov models
    Jian Xiao
    Wensheng Zhu
    Jianhua Guo
    BMC Bioinformatics, 14
  • [8] Reduced-complexity estimation for large-scale hidden Markov models
    Dey, S
    Mareels, I
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (05) : 1242 - 1249
  • [9] Large-scale event detection using semi-hidden Markov models
    Hongeng, S
    Nevatia, R
    NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 1455 - 1462
  • [10] Automatic Analysis of Large-scale Nanopore Data Using Hidden Markov Models
    Zhang, Jianhua
    Liu, Xiuling
    IFAC PAPERSONLINE, 2020, 53 (02): : 16759 - 16766