MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS

被引:34
|
作者
Cho, Hyunkeun [1 ]
Qu, Annie [1 ]
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
基金
美国国家科学基金会;
关键词
Diverging number of parameters; longitudinal data; model selection; oracle property; quadratic inference function; SCAD; GENERALIZED ESTIMATING EQUATIONS; NONCONCAVE PENALIZED LIKELIHOOD; LONGITUDINAL DATA-ANALYSIS; VARIABLE SELECTION; SEMIPARAMETRIC REGRESSION; INFORMATION CRITERION; ORACLE PROPERTIES; FUNCTIONAL DATA; SHRINKAGE; LASSO;
D O I
10.5705/ss.2011.058
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
High-dimensional longitudinal data arise frequently in biomedical and genomic research. It is important to select relevant covariates when the dimension of the parameters diverges as the sample size increases. We propose the penalized quadratic inference function to perform model selection and estimation simultaneously in the framework of a diverging number of regression parameters. The penalized quadratic inference function can easily take correlation information from clustered data into account, yet it does not require specifying the likelihood function. This is advantageous compared to existing model selection methods for discrete data with large cluster size. In addition, the proposed approach enjoys the oracle property; it is able to identify non-zero components consistently with probability tending to 1, and any finite linear combination of the estimated non-zero components has an asymptotic normal distribution. We propose an efficient algorithm by selecting an effective tuning parameter to solve the penalized quadratic inference function. Monte Carlo simulation studies have the proposed method selecting the correct model with a high frequency and estimating covariate effects accurately even when the dimension of parameters is high. We illustrate the proposed approach by analyzing periodontal disease data.
引用
收藏
页码:901 / 927
页数:27
相关论文
共 50 条
  • [1] Shrinkage estimation analysis of correlated binary data with a diverging number of parameters
    XU PeiRong
    FU WenJiang
    ZHU LiXing
    ScienceChina(Mathematics), 2013, 56 (02) : 359 - 377
  • [2] Shrinkage estimation analysis of correlated binary data with a diverging number of parameters
    PeiRong Xu
    WenJiang Fu
    LiXing Zhu
    Science China Mathematics, 2013, 56 : 359 - 377
  • [3] Shrinkage estimation analysis of correlated binary data with a diverging number of parameters
    Xu PeiRong
    Fu WenJiang
    Zhu LiXing
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (02) : 359 - 377
  • [4] ESTIMATION AND MODEL SELECTION IN GENERALIZED ADDITIVE PARTIAL LINEAR MODELS FOR CORRELATED DATA WITH DIVERGING NUMBER OF COVARIATES
    Wang, Li
    Xue, Lan
    Qu, Annie
    Liang, Hua
    ANNALS OF STATISTICS, 2014, 42 (02): : 592 - 624
  • [5] Tuning Parameter Selection in Cox Proportional Hazards Model with a Diverging Number of Parameters
    Ni, Ai
    Cai, Jianwen
    SCANDINAVIAN JOURNAL OF STATISTICS, 2018, 45 (03) : 557 - 570
  • [6] Shrinkage tuning parameter selection with a diverging number of parameters
    Wang, Hansheng
    Li, Bo
    Leng, Chenlei
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 671 - 683
  • [7] Parsimonious Model Averaging With a Diverging Number of Parameters
    Zhang, Xinyu
    Zou, Guohua
    Liang, Hua
    Carroll, Raymond J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 972 - 984
  • [8] Variable selection of partially functional linear spatial autoregressive model with a diverging number of parameters
    Wu, Lin
    Zhao, Yang
    Tang, Yuchao
    Dong, Fuzhou
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [9] Variable selection for spatial autoregressive models with a diverging number of parameters
    Xie, Tianfa
    Cao, Ruiyuan
    Du, Jiang
    STATISTICAL PAPERS, 2020, 61 (03) : 1125 - 1145
  • [10] Variable selection for spatial autoregressive models with a diverging number of parameters
    Tianfa Xie
    Ruiyuan Cao
    Jiang Du
    Statistical Papers, 2020, 61 : 1125 - 1145