Voronoi diagram with visual restriction

被引:2
|
作者
Fan, Chenglin [1 ]
Luo, Jun [1 ,2 ]
Wang, Wencheng [3 ]
Zhu, Binhai [4 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Beijing 100864, Peoples R China
[2] Huawei Noahs Ark Lab, Hong Kong, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Inst Software, Beijing 100864, Peoples R China
[4] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA
基金
对外科技合作项目(国际科技项目);
关键词
Voronoi diagram; Visual restriction; Computational geometry;
D O I
10.1016/j.tcs.2013.08.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a normal Voronoi diagram, each site is able to see all the points in the plane. In this paper, we study the case such that each site is only able to see a visually restricted region in the plane and construct the so-called Visual Restriction Voronoi Diagram (VRVD). We show that the visual restriction Voronoi cell of each site is not necessarily convex and it could consist of many disjoint regions. We prove that the combinatorial complexity of the VRVD on n sites is Theta(n(2)), and then show that the VRVD can be constructed in O(n(2)) time and O(n(2)) space. Besides that, we also give another algorithm with an extra log n factor of running time to compute VRVD, which is easy to implement in practice. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 39
页数:9
相关论文
共 50 条
  • [1] Visual Servoing on the Generalized Voronoi Diagram Using an Omnidirectional Camera
    Romain Marie
    Hela Ben Said
    Joanny Stéphant
    Ouiddad Labbani-Igbida
    Journal of Intelligent & Robotic Systems, 2019, 94 : 793 - 804
  • [2] Visual Servoing on the Generalized Voronoi Diagram Using an Omnidirectional Camera
    Marie, Romain
    Ben Said, Hela
    Stephant, Joanny
    Labbani-Igbida, Ouiddad
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 94 (3-4) : 793 - 804
  • [3] Rounding Voronoi diagram
    Devillers, O
    Gandoin, PM
    THEORETICAL COMPUTER SCIENCE, 2002, 283 (01) : 203 - 221
  • [4] The stability of the Voronoi diagram
    Vyalyi, MN
    Gordeyev, EN
    Tarasov, SP
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1996, 36 (03) : 405 - 414
  • [5] Rounding Voronoi diagram
    Devillers, O
    Gandoin, PM
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, 1999, 1568 : 375 - 387
  • [6] Uncertain Voronoi diagram
    Jooyandeh, Mohammadreza
    Mohades, Ali
    Mirzakhah, Maryam
    INFORMATION PROCESSING LETTERS, 2009, 109 (13) : 709 - 712
  • [7] The anchored Voronoi diagram
    Díaz-Báñez, JM
    Gómez, F
    Ventura, I
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 3, 2004, 3045 : 207 - 216
  • [8] Fuzzy Voronoi Diagram
    Jooyandeh, Mohammadreza
    Khorasani, Ali Mohades
    ADVANCES IN COMPUTER SCIENCE AND ENGINEERING, 2008, 6 : 82 - 89
  • [9] Hyperbolic Voronoi diagram
    Nilforoushan, Zahra
    Mohades, Ali
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2006, PT 5, 2006, 3984 : 735 - 742
  • [10] Voronoi diagram of a circle set constructed from Voronoi diagram of a point set
    Kim, DS
    Kim, D
    Sugihara, K
    ALGORITHM AND COMPUTATION, PROCEEDINGS, 2001, 1969 : 432 - 443