On Decoding Binary Perfect and Quasi-Perfect Codes over Markov Noise Channels

被引:3
|
作者
Al-Lawati, Haider [1 ]
Alajaji, Fady [1 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Binary channels with memory; Markov noise; maximum likelihood decoding; minimum Hamming distance decoding; linear block codes; perfect and quasi-perfect codes;
D O I
10.1109/TCOMM.2009.04.070114
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the decoding problem when a binary linear perfect or quasi-perfect code is transmitted over a binary channel with additive Markov noise. After examining the properties of the channel block transition distribution, we derive sufficient conditions under which strict maximum-likelihood decoding is equivalent to strict minimum Hamming distance decoding when the code is perfect. Additionally, we show a near equivalence relationship between strict maximum likelihood and strict minimum distance decoding for quasi-perfect codes for a range of channel parameters and the code's minimum distance. As a result, an improved (complete) minimum distance decoder is proposed and simulations illustrating its benefits are provided.
引用
收藏
页码:873 / 878
页数:6
相关论文
共 50 条
  • [1] On decoding binary quasi-perfect codes over Markov noise channels
    Al-Lawati, Haider
    Alajaji, Fady
    2007 10TH CANADIAN WORKSHOP ON INFORMATION THEORY, 2007, : 164 - 167
  • [2] BINARY LINEAR QUASI-PERFECT CODES ARE NORMAL
    HOU, XD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) : 378 - 379
  • [3] Fast decoding of quasi-perfect Lee distance codes
    Horak, Peter
    AlBdaiwi, Bader F.
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (03) : 357 - 367
  • [4] Fast decoding of quasi-perfect Lee distance codes
    Peter Horak
    Bader F. AlBdaiwi
    Designs, Codes and Cryptography, 2006, 40 : 357 - 367
  • [6] Perfect and Quasi-Perfect Codes Under the lp Metric
    Zhang, Tao
    Ge, Gennian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) : 4325 - 4331
  • [7] Weight Spectrum of Quasi-Perfect Binary Codes with Distance 4
    Afanassiev, Valentin B.
    Davydov, Alexander A.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2193 - 2197
  • [8] Binary and ternary linear quasi-perfect codes with small dimensions
    Baicheva, Tsonka
    Bouyukliev, Iliya
    Dodunekov, Stefan
    Fack, Veerle
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) : 4335 - 4339
  • [9] Quasi-perfect codes in the lp metric
    Strapasson, Joao E.
    Jorge, Grasiele C.
    Campello, Antonio
    Costa, Sueli I. R.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 852 - 866
  • [10] Quasi-perfect codes with small distance
    Etzion, T
    Mounits, B
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 453 - 453