Signature of an anticipatory response in area V1 as modeled by a probabilistic model and a spiking neural network
被引:0
|
作者:
Kaplan, Bernhard A.
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol, Dept Computat Biol, Stockholm, Sweden
Karolinska Inst, Stockholm Brain Inst, Stockholm, SwedenRoyal Inst Technol, Dept Computat Biol, Stockholm, Sweden
Kaplan, Bernhard A.
[1
,2
]
Khoei, Mina A.
论文数: 0引用数: 0
h-index: 0
机构:
Aix Marseille Univ, CNRS, UMR 7289, Inst Neurosci Timone, Marseille, FranceRoyal Inst Technol, Dept Computat Biol, Stockholm, Sweden
Khoei, Mina A.
[4
]
Lansner, Anders
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol, Dept Computat Biol, Stockholm, Sweden
Karolinska Inst, Stockholm Brain Inst, Stockholm, Sweden
Stockholm Univ, Dept Numer Anal & Comp Sci, S-10691 Stockholm, SwedenRoyal Inst Technol, Dept Computat Biol, Stockholm, Sweden
Lansner, Anders
[1
,2
,3
]
Perrinet, Laurent U.
论文数: 0引用数: 0
h-index: 0
机构:
Aix Marseille Univ, CNRS, UMR 7289, Inst Neurosci Timone, Marseille, FranceRoyal Inst Technol, Dept Computat Biol, Stockholm, Sweden
Perrinet, Laurent U.
[4
]
机构:
[1] Royal Inst Technol, Dept Computat Biol, Stockholm, Sweden
[2] Karolinska Inst, Stockholm Brain Inst, Stockholm, Sweden
[3] Stockholm Univ, Dept Numer Anal & Comp Sci, S-10691 Stockholm, Sweden
[4] Aix Marseille Univ, CNRS, UMR 7289, Inst Neurosci Timone, Marseille, France
As it is confronted to inherent neural delays, how does the visual system create a coherent representation of a rapidly changing environment? In this paper, we investigate the role of motion-based prediction in estimating motion trajectories compensating for delayed information sampling. In particular, we investigate how anisotropic diffusion of information may explain the development of anticipatory response as recorded in a neural populations to an approaching stimulus. We validate this using an abstract probabilistic framework and a spiking neural network (SNN) model. Inspired by a mechanism proposed by Nijhawan [1], we first use a Bayesian particle filter framework and introduce a diagonal motion-based prediction model which extrapolates the estimated response to a delayed stimulus in the direction of the trajectory. In the SNN implementation, we have used this pattern of anisotropic, recurrent connections between excitatory cells as mechanism for motion-extrapolation. Consistent with recent experimental data collected in extracellular recordings of macaque primary visual cortex [2], we have simulated different trajectory lengths and have explored how anticipatory responses may be dependent on the information accumulated along the trajectory. We show that both our probabilistic framework and the SNN model can replicate the experimental data qualitatively. Most importantly, we highlight requirements for the development of a trajectory-dependent anticipatory response, and in particular the anisotropic nature of the connectivity pattern which leads to the motion extrapolation mechanism.
机构:
Univ Tokyo, Grad Sch Frontier Sci, Wako, Saitama, JapanUniv Tokyo, Grad Sch Frontier Sci, Wako, Saitama, Japan
Igarashi, Yasuhiko
论文数: 引用数:
h-index:
机构:
Oizumi, Masafumi
Okada, Masato
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Frontier Sci, Wako, Saitama, Japan
RIKEN, Brain Sci Inst, Wako, Saitama, JapanUniv Tokyo, Grad Sch Frontier Sci, Wako, Saitama, Japan
机构:
Kings Coll London, Div Engn, London WC2R 2LS, England
Univ London, Ctr Brain & Cognit Dev, London WC1E 7JL, EnglandKings Coll London, Div Engn, London WC2R 2LS, England
Spratling, Michael W.
JOURNAL OF NEUROSCIENCE,
2010,
30
(09):
: 3531
-
3543