Indentation and scratch testing of DLC-Zr coatings on ultrafine-grained titanium processed by high-pressure torsion

被引:45
|
作者
Wang, Chuan Ting [1 ,2 ]
Escudeiro, Ana [3 ]
Polcar, Tomas [1 ]
Cavaleiro, Albano [3 ]
Wood, Robert J. K. [1 ]
Gao, Nong [2 ]
Langdon, Terence G. [2 ,4 ,5 ]
机构
[1] Univ Southampton, Fac Engn & Environm, Natl Ctr Adv Tribol Southampton, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Mat Res Grp, Fac Engn & Environm, Southampton SO17 1BJ, Hants, England
[3] Univ Coimbra, SEG CEMUC Dept Mech Engn, P-3030788 Coimbra, Portugal
[4] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA
基金
英国工程与自然科学研究理事会;
关键词
High-pressure torsion; Titanium; DLC-Zr coatings; Adhesion; Bio-implants; SEVERE PLASTIC-DEFORMATION; CARBON THIN-FILMS; MECHANICAL-PROPERTIES; ROOM-TEMPERATURE; PURE TITANIUM; WEAR BEHAVIOR; ADHESION; HARDNESS; ALLOY; STRENGTH;
D O I
10.1016/j.wear.2012.12.033
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
High-pressure torsion was employed to refine the microstructure of grade 2 Ti under an imposed pressure of 3.0 GPa at room temperature. The microhardness of grade 2 Ti increased from 1.82 GPa for the coarse grain state to 3.05 GPa after high-pressure torsion processing, where this value is very close to the hardness of the Ti-6Al-4V alloy. Subsequently, several diamond-like carbon (DLC) coatings with thicknesses of similar to 1.4 mu m were deposited on as-received Ti, high-pressure torsion processed Ti and Ti-6Al-4V samples via physical vapour deposition. Both indentation and scratch tests showed a much improved adhesion of DLC-7Zr, DLC:H-7Zr and DLC-9Zr coatings with high-pressure torsion processed Ti as the substrate by comparison with the same coatings on coarse-grained Ti. The results suggest that commercial pure Ti processed by high-pressure torsion and coated with a diamond-like carbon coating provides a potential candidate material for bio-implant applications. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:304 / 310
页数:7
相关论文
共 50 条
  • [1] Tribology testing of ultrafine-grained Ti processed by high-pressure torsion with subsequent coating
    Wang, Chuan Ting
    Gao, Nong
    Gee, Mark G.
    Wood, Robert J. K.
    Langdon, Terence G.
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (13) : 4742 - 4748
  • [2] Tribology testing of ultrafine-grained Ti processed by high-pressure torsion with subsequent coating
    Chuan Ting Wang
    Nong Gao
    Mark G. Gee
    Robert J. K. Wood
    Terence G. Langdon
    Journal of Materials Science, 2013, 48 : 4742 - 4748
  • [3] Hydrogen Effects on Ultrafine-Grained Steels Processed by High-Pressure Torsion
    Mine, Yoji
    Horita, Zenji
    MATERIALS TRANSACTIONS, 2012, 53 (05) : 773 - 785
  • [4] Microstructural evolution in ultrafine-grained titanium processed by high-pressure torsion under different pressures
    Wang, Chuan Ting
    Fox, Alan G.
    Langdon, Terence G.
    JOURNAL OF MATERIALS SCIENCE, 2014, 49 (19) : 6558 - 6564
  • [5] Evolution of hardness in ultrafine-grained metals processed by high-pressure torsion
    Kawasaki, Megumi
    Lee, Han-Joo
    Ahn, Byungmin
    Zhilyaev, Alexander P.
    Langdon, Terence G.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2014, 3 (04): : 311 - 318
  • [6] Hydrogen behavior in ultrafine-grained palladium processed by high-pressure torsion
    Iwaoka, Hideaki
    Horita, Zenji
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (34) : 14879 - 14886
  • [7] Microstructural evolution in ultrafine-grained titanium processed by high-pressure torsion under different pressures
    Chuan Ting Wang
    Alan G. Fox
    Terence G. Langdon
    Journal of Materials Science, 2014, 49 : 6558 - 6564
  • [9] An examination of the saturation microstructures achieved in ultrafine-grained metals processed by high-pressure torsion
    Sabbaghianrad, Shima
    Wongsa-Ngam, Jittraporn
    Kawasaki, Megumi
    Langdon, Terence G.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2014, 3 (04): : 319 - 326
  • [10] Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion
    Megumi Kawasaki
    Journal of Materials Science, 2014, 49 : 18 - 34