COHEN-MACAULAY AND GORENSTEIN PROPERTIES UNDER THE AMALGAMATED CONSTRUCTION

被引:9
|
作者
Sahandi, P. [1 ]
Shirmohammadi, N. [1 ]
Sohrabi, S. [1 ]
机构
[1] Univ Tabriz, Dept Math, Tabriz, Iran
关键词
Amalgamated algebra; Cohen-Macaulay ring; Gorenstein ring; Quasi-Gorenstein ring; Serre condition; Universally catenary ring; RINGS; IDEAL; DUPLICATION; MODULES;
D O I
10.1080/00927872.2014.999928
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be commutative rings with unity, f : A -> B a ring homomorphism, and J an ideal of B. Then the subring A (sic)(f) J := {(a, f(a) + j)vertical bar a is an element of A and j is an element of J} of A x B is called the amalgamation of A with B along J with respect to f. In this article, among other things, we investigate the Cohen-Macaulay and (quasi-) Gorenstein properties on the ring A (sic)(f) J.
引用
收藏
页码:1096 / 1109
页数:14
相关论文
共 50 条