Lie symmetries analysis and conservation laws for the fractional Calogero-Degasperis-Ibragimov-Shabat equation

被引:11
|
作者
Sahoo, S. [1 ]
Ray, S. Saha [2 ]
机构
[1] Kalinga Inst Ind Technol, Dept Math, Bhubaneswar 751024, Odisha, India
[2] Natl Inst Technol, Dept Math, Rourkela 769008, India
关键词
Time fractional Calogero-Degasperis-Ibragimov-Shabat equation; Erdelyi-Kober operator; Lie symmetries analysis; new conservation laws; symmetry; PARTIAL-DIFFERENTIAL-EQUATION; NONLOCAL SYMMETRIES; REDUCTION; BURGERS;
D O I
10.1142/S0219887818501104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The present paper includes the study of symmetry analysis and conservation laws of the time-fractional Calogero-Degasperis-Ibragimov-Shabat (CDIS) equation. The Erdelyi-Kober fractional differential operator has been used here for reduction of time fractional CDIS equation into fractional ordinary differential equation. Also, the new conservation theorem has been used for the analysis of the conservation laws. Furthermore, the new conserved vectors have been constructed for time fractional CDIS equation by means of the new conservation theorem with formal Lagrangian.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A remark on nonlocal symmetries for the Calogero-Degasperis-Ibragimov-Shabat equation
    Sergyeyev, A
    Sanders, JA
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2003, 10 (01) : 78 - 85
  • [2] Properties of the Calogero-Degasperis-Ibragimov-Shabat differential sequence
    Euler M.
    Euler N.
    Leach P.G.L.
    Lobachevskii Journal of Mathematics, 2011, 32 (1) : 61 - 70
  • [3] A Remark on Nonlocal Symmetries for the Calogero—Degasperis—Ibragimov—Shabat Equation
    Artur Sergyeyev
    Jan A Sanders
    Journal of Nonlinear Mathematical Physics, 2003, 10 : 78 - 85
  • [4] An analysis of the Zhiber-Shabat equation including Lie point symmetries and conservation laws
    Morris, R. M.
    Kara, A. H.
    Biswas, Anjan
    COLLECTANEA MATHEMATICA, 2016, 67 (01) : 55 - 62
  • [5] An analysis of the Zhiber-Shabat equation including Lie point symmetries and conservation laws
    R. M. Morris
    A. H. Kara
    Anjan Biswas
    Collectanea Mathematica, 2016, 67 : 55 - 62
  • [6] Analysis of the Calogero–Degasperis equation through point symmetries
    Sherin Agnus
    Amlan Kanti Halder
    Rajeswari Seshadri
    P. G. L. Leach
    The Journal of Analysis, 2023, 31 : 705 - 718
  • [7] Analysis of the Calogero-Degasperis equation through point symmetries
    Agnus, Sherin
    Halder, Amlan Kanti
    Seshadri, Rajeswari
    Leach, P. G. L.
    JOURNAL OF ANALYSIS, 2023, 31 (01): : 705 - 718
  • [8] Lie symmetries, conservation laws and exact solutions for time fractional Ito equation
    Akbulut, Arzu
    WAVES IN RANDOM AND COMPLEX MEDIA, 2021,
  • [9] Lie Symmetries,Conservation Laws and Explicit Solutions for Time Fractional Rosenau–Haynam Equation
    秦春艳
    田守富
    王秀彬
    张田田
    CommunicationsinTheoreticalPhysics, 2017, 67 (02) : 157 - 165
  • [10] Lie symmetry analysis of a variable coefficient Calogero-Degasperis equation
    Sophocleous, Christodoulos
    Tracina, Rita
    PHYSICA SCRIPTA, 2018, 93 (10)