On the laws of homogeneous functionals of the Brownian bridge

被引:0
|
作者
Carmona, P
Petit, F
Pitman, J
Yor, M
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, F-31062 Toulouse 4, France
[2] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
[3] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[4] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
关键词
reflecting Brownian motion; bessel processes; Ray-Knight theorems; generalized arc-sine laws;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we give a general and elementary method, which allows to compute the distributions of a large number of interesting functionals of the standard Brownian bridge.
引用
收藏
页码:445 / 455
页数:11
相关论文
共 50 条
  • [1] Functionals of the Brownian Bridge
    Ortmann, Janosch
    SEMINAIRE DE PROBABILITES XLV, 2013, 2078 : 433 - 458
  • [2] Some Brownian functionals and their laws
    Donati-Martin, C
    Yor, M
    ANNALS OF PROBABILITY, 1997, 25 (03): : 1011 - 1058
  • [3] CHUNG'S LAW FOR HOMOGENEOUS BROWNIAN FUNCTIONALS
    Lachal, Aime
    Simon, Thomas
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (02) : 561 - 579
  • [4] Ito formula for generalized functionals of Brownian bridge
    Lee, YJ
    Huang, CC
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, : 107 - 127
  • [5] Four limit theorems for quadratic functionals of Brownian motion and Brownian bridge
    Peccati, G
    Yor, M
    ASYMPTOTIC METHODS IN STOCHASTICS, 2004, 44 : 75 - 87
  • [6] On Striking Identities About the Exponential Functionals of the Brownian Bridge and Brownian Motion
    Catherine Donati-Martin
    Hiroyuki Matsumoto
    Marc Yor
    Periodica Mathematica Hungarica, 2000, 41 (1-2) : 103 - 119
  • [7] Functionals of fractional Brownian motion and the three arcsine laws
    Sadhu, Tridib
    Wiese, Kay Jorg
    PHYSICAL REVIEW E, 2021, 104 (05)
  • [8] Brownian bridge on hyperbolic spaces and on homogeneous trees
    Philippe Bougerol
    Thierry Jeulin
    Probability Theory and Related Fields, 1999, 115 : 95 - 120
  • [9] Brownian bridge on hyperbolic spaces and on homogeneous trees
    Bougerol, P
    Jeulin, T
    PROBABILITY THEORY AND RELATED FIELDS, 1999, 115 (01) : 95 - 120
  • [10] Non-linear functionals of the Brownian bridge and some applications
    Berzin-Joseph, C
    León, JR
    Ortega, J
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 92 (01) : 11 - 30