Co-electrolysis of CO2 and H2O: From electrode reactions to cell-level development

被引:36
|
作者
Herranz, Juan [1 ]
Patru, Alexandra [1 ]
Fabbri, Emiliana [1 ]
Schmidt, Thomas J. [1 ,2 ]
机构
[1] Paul Scherrer Inst, Electrochem Lab, CH-5232 Villigen, Switzerland
[2] Swiss Fed Inst Technol, Lab Phys Chem, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
OXYGEN EVOLUTION REACTION; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; WATER OXIDATION; CATALYST; DESIGN; SYNGAS; SELECTIVITY; EFFICIENT; CATHODE;
D O I
10.1016/j.coelec.2020.05.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electroreduction of CO2 into value-added products (e.g. CO) constitutes an excellent means of decreasing this greenhouse gas emissions, but limited efforts have been devoted to the implementation of this reaction within the so-called co-electrolysis cells operating at process-relevant currents >> 100 mA.cm(geom)(-2). Reaching such performances shall require a combination of gas-fed reactants and the corresponding diffusion electrodes, along with ion-exchange membranes and ionomers that set the operative pH at the cells' cathode and anode. The latter constitutes a key design parameter that must be combined with the need to minimize the crossover of reaction products and/or (bi)carbonate anions from the cathode to the anode, whereby their reoxidation to carbon dioxide leads to a decrease in the device's net CO2 consumption.
引用
收藏
页码:89 / 95
页数:7
相关论文
共 50 条
  • [1] H2O/CO2 co-electrolysis in solid oxide electrolysis cells
    Han Minfang
    Fan Hui
    Peng Suping
    EngineeringSciences, 2014, 12 (01) : 43 - 50
  • [2] An electrochemical model for syngas production by co-electrolysis of H2O and CO2
    Ni, Meng
    JOURNAL OF POWER SOURCES, 2012, 202 : 209 - 216
  • [3] Co-electrolysis of H2O and CO2 in a solid oxide electrolysis cell with hierarchically structured porous electrodes
    Yang, Chenghao
    Li, Jiao
    Newkirk, James
    Baish, Valerie
    Hu, Renzong
    Chen, Yu
    Chen, Fanglin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (31) : 15913 - 15919
  • [4] Accurate predictions of H2O and CO2 co-electrolysis outlet compositions in operation
    Aicart, J.
    Petitjean, M.
    Laurencin, J.
    Tallobre, L.
    Dessemond, L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (08) : 3134 - 3148
  • [5] Electrochemical characterization of electrolyte supported solid oxide electrolysis cell during CO2/H2O co-electrolysis
    Shirasangi, Rahulkumar
    Dasari, Hari Prasad
    Saidutta, M. B.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (06) : 1773 - 1784
  • [6] Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability
    Graves, Christopher
    Ebbesen, Sune D.
    Mogensen, Mogens
    SOLID STATE IONICS, 2011, 192 (01) : 398 - 403
  • [7] Electrochemical characterization and mechanism analysis of high temperature Co-electrolysis of CO2 and H2O in a solid oxide electrolysis cell
    Zhang, Wenqiang
    Zheng, Yun
    Yu, Bo
    Wang, Jianchen
    Chen, Jing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (50) : 29911 - 29920
  • [8] Numerical investigation of a novel design for an elliptical channel solid oxide electrolysis cell for CO2/H2O Co-Electrolysis
    Tu, Yachao
    Zhang, Zhonggang
    Lin, Haoxiang
    Cai, Weiqiang
    FUEL, 2025, 385
  • [9] The development of solid oxide co-electrolysis of H2O and CO2 on large-size cells and stacks
    Liang, Jingjing
    Zhu, Jianzhong
    Han, Minfang
    Hua, Xiufu
    Li, Duruo
    Ni, Meng
    iEnergy, 2023, 2 (02): : 109 - 118
  • [10] Elementary reaction modeling of CO2/H2O co-electrolysis cell considering effects of cathode thickness
    Li, Wenying
    Shi, Yixiang
    Luo, Yu
    Cai, Ningsheng
    JOURNAL OF POWER SOURCES, 2013, 243 : 118 - 130