Model-Driven Deep Learning for Massive Multiuser MIMO Constant Envelope Precoding

被引:12
|
作者
He, Yunfeng [1 ]
He, Hengtao [1 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 804, Taiwan
基金
美国国家科学基金会;
关键词
Precoding; Manifolds; Deep learning; MIMO communication; Unsupervised learning; Optimization; Backtracking; Massive MIMO; constant envelope; precoding; deep learning; model-driven; unsupervised learning; SYSTEMS;
D O I
10.1109/LWC.2020.3005027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Constant envelope (CE) precoding design is of great interest for massive multiuser multi-input multi-output systems because it can significantly reduce hardware cost and power consumption. However, existing CE precoding algorithms are hindered by excessive computational overhead. In this letter, a novel model-driven deep learning (DL)-based network that combines DL with conjugate gradient algorithm is proposed for CE precoding. Specifically, the original iterative algorithm is unfolded and parameterized by trainable variables. With the proposed architecture, the variables can be learned efficiently from training data through unsupervised learning approach. Thus, the proposed network learns to obtain the search step size and adjust the search direction. Simulation results demonstrate the superiority of the proposed network in terms of multiuser interference suppression capability and computational overhead.
引用
收藏
页码:1835 / 1839
页数:5
相关论文
共 50 条
  • [1] Improved Constant Envelope Multiuser Precoding for Massive MIMO Systems
    Chen, Jung-Chieh
    Wen, Chao-Kai
    Wong, Kai-Kit
    IEEE COMMUNICATIONS LETTERS, 2014, 18 (08) : 1311 - 1314
  • [2] Model-Driven Deep Learning for Massive MU-MIMO With Finite-Alphabet Precoding
    He, Hengtao
    Zhang, Mengjiao
    Jin, Shi
    Wen, Chao-Kai
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (10) : 2216 - 2220
  • [3] A Model-Driven Deep Learning Method for Massive MIMO Detection
    Liao, Jieyu
    Zhao, Junhui
    Gao, Feifei
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1724 - 1728
  • [4] Model-Driven Deep Learning Based Precoding for FDD Cell-Free Massive MIMO with Imperfect CSI
    Liu, Shicong
    Gao, Zhen
    Hu, Chun
    Tan, Shufeng
    Fang, Liang
    Qiao, Li
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 696 - 701
  • [5] CSI Feedback With Model-Driven Deep Learning of Massive MIMO Systems
    Guo, Jianhua
    Wang, Lei
    Li, Feng
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) : 547 - 551
  • [6] Deep Learning for Distributed Channel Feedback and Multiuser Precoding in FDD Massive MIMO
    Sohrabi, Foad
    Attiah, Kareem M.
    Yu, Wei
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (07) : 4044 - 4057
  • [7] A Markovian Model-Driven Deep Learning Framework for Massive MIMO CSI Feedback
    Liu, Zhenyu
    del Rosario, Mason
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (02) : 1214 - 1228
  • [8] Model-Driven Deep Learning for MIMO Detection
    He, Hengtao
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 1702 - 1715
  • [9] Model-Driven Deep Learning for Hybrid Precoding in Millimeter Wave MU-MIMO System
    Jin, Weijie
    Zhang, Jing
    Wen, Chao-Kai
    Jin, Shi
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (10) : 5862 - 5876
  • [10] Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems: A Deep Learning Approach
    Elbir, Ahmet M.
    Papazafeiropoulos, Anastasios K.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (01) : 552 - 563