Teichmuller Spaces of Riemann Surfaces with Orbifold Points of Arbitrary Order and Cluster Variables

被引:41
|
作者
Chekhov, Leonid [1 ,2 ,3 ]
Shapiro, Michael [4 ]
机构
[1] Lab Poncelet, Moscow, Russia
[2] VA Steklov Math Inst, Moscow 117333, Russia
[3] Univ Loughborough, Sch Math, Loughborough LE11 3T, Leics, England
[4] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
ALGEBRAS;
D O I
10.1093/imrn/rnt016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a new generalized class of cluster-type mutations for which exchange transformations are given by reciprocal polynomials. In the case of second-order polynomials of the form x + 2 cos pi/n(o) + x(-1) these transformations are related to triangulations of Riemann surfaces of arbitrary genus with at least one hole/puncture and with an arbitrary number of orbifold points of arbitrary integer orders n(o). In the second part of the paper, we propose the dual graph description of the corresponding Teichmuller spaces, construct the Poisson algebra of the Teichmuller space coordinates, propose the combinatorial description of the corresponding geodesic functions and find the mapping class group transformations thus providing the complete description of the above Teichmuller spaces.
引用
收藏
页码:2746 / 2772
页数:27
相关论文
共 22 条