Radial solutions of an elliptic equation with singular nonlinearity

被引:8
|
作者
Davila, Juan [1 ,2 ]
Montenegro, Marcelo [3 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] CMM, Santiago, Chile
[3] Univ Estadual Campinas, IMECC, Dept Matemat, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Radial solutions; Uniqueness; Singular nonlinearity; GROUND-STATES; DELTA-U; UNIQUENESS; DELTA-U+F(U)=0; RN;
D O I
10.1016/j.jmaa.2008.05.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the equation -Delta u + u(-beta) = u(p), u > 0 in B-R, u = 0 on partial derivative B-R, where B-R subset of R-N, 0 < beta < 1 and 1 < p < N+2/N-2 if N >= 3, 1 < p < +infinity if N = 2, we show that there is (R) over bar > 0 such that a radial solution u(R) exists if and only if 0 < R <= <(R)over bar>. It is unique in the class of radial solutions and u(R)' (R) < 0 if R < (R) over bar, while u((R) over bar)'((R) over bar) = 0. We also give a variational characterization of u((R) over bar). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:360 / 379
页数:20
相关论文
共 50 条