Tame kernels for biquadratic number fields

被引:5
|
作者
Yue, Q [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
[2] Abdus Salam ICTP, Math Sect, Trieste, Italy
来源
K-THEORY | 2005年 / 35卷 / 1-2期
关键词
Tame kernel; class group; transfer map;
D O I
10.1007/s10977-005-1509-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F = Q(root- d(1)) and E = Q(root- d(1),root d(2)), d(1) and d(2) squarefree integers, be an imaginary field and a biquadratic field, respectively. Let S be the set consisting of all infinite primes, all dyadic primes and all finite primes which ramify in E. Suppose the 4-rank of the class group of F is zero and the S-ideal class group of F has odd order, we give the forms of all elements of order <= 2 in K2OE and use the Hurrelbrink and Kolster's method [ Hurrelbrink, J. and Kolster, M.: J. reine angew. Math. 499 ( 1998), 145 - 188] to obtain the forms of all elements of order 4 in K2OE.
引用
收藏
页码:69 / 91
页数:23
相关论文
共 50 条