A PSO-TRAINED ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR FAULT CLASSIFICATION

被引:0
|
作者
Khalid, Haris M. [1 ]
Rizvi, S. Z. [1 ]
Cheded, Lahouari [1 ]
Doraiswami, Rajamani [2 ,3 ]
Khoukhi, Ammar [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dhahran, Saudi Arabia
[2] Univ New Brunswick, Fredericton, NB, Canada
[3] NSERC, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Particle swarm optimization (PSO); Hybrid neuro-fuzzy; Soft computing; ANN; ANFIS; Fault detection; Benchmarked laboratory scale two-tank system;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When a fault occurs during an industrial inspection, workmen have to manually find the location and type of the fault in order to remove it. It is often difficult to accurately find the location and type of fault. Hence, development of an offline intelligent fault diagnosis system for process control industry is of great importance since successful detection of fault is a precursor to fault isolation using corrective actions. This paper presents a novel hybrid Particle Swarm Optimization (PS 0) and Subtractive Clustering (SC) based Neuro-Fuzzy Inference System (ANFIS) designed for fault detection. The proposed model uses the PSO algorithm to find optimal parameters for (SC) based ANFIS training. The developed PSO-SC-ANFIS scheme provides critical information about the presence or absence of a fault. The proposed scheme is evaluated on a laboratory scale benchmark two-tank process. Leakage fault is detected and results are presented at the end of the paper showing successful diagnosis of most incipient faults when subjected to a fresh set of data.
引用
收藏
页码:399 / 405
页数:7
相关论文
共 50 条
  • [1] Adaptive Neuro-Fuzzy Inference System for Classification of Texts
    Kamil, Aida-zade
    Rustamov, Samir
    Clements, Mark A.
    Mustafayev, Elshan
    RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 63 - 70
  • [2] Fault conditions classification of automotive generator using an adaptive neuro-fuzzy inference system
    Wu, Jian-Da
    Kuo, Jun-Ming
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (12) : 7901 - 7907
  • [4] Adaptive Neuro-Fuzzy Inference System for Classification of ECG Signal
    Muthuvel, K.
    Suresh, L. Padma
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT 2013), 2013, : 1162 - 1166
  • [5] Adaptive Neuro-Fuzzy Inference System for Texture Image Classification
    Kuncoro, B. Ari
    Suharjito
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, COGNITIVE SCIENCE, OPTICS, MICRO ELECTRO-MECHANICAL SYSTEM, AND INFORMATION TECHNOLOGY (ICACOMIT), 2015, : 196 - 200
  • [6] Implementation of Adaptive Neuro-Fuzzy Inference System in Fault Location Estimation
    Abdullah, Amalina
    Banmongkol, Channarong
    Hoonchareon, Naebboon
    Hidaka, Kunihiko
    9TH INTERNATIONAL CONFERENCE ON ROBOTIC, VISION, SIGNAL PROCESSING AND POWER APPLICATIONS: EMPOWERING RESEARCH AND INNOVATION, 2017, 398 : 737 - 748
  • [7] Application of Adaptive Neuro-Fuzzy Inference System for Diabetes Classification and Prediction
    Geman, Oana
    Chiuchisan, Iuliana
    Toderean , Roxana
    2017 IEEE INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2017, : 639 - 642
  • [8] Improved adaptive neuro-fuzzy inference system
    Benmiloud, Tarek
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (03): : 575 - 582
  • [9] Multioutput Adaptive Neuro-fuzzy Inference System
    Benmiloud, T.
    RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 94 - 98
  • [10] Improved adaptive neuro-fuzzy inference system
    Tarek Benmiloud
    Neural Computing and Applications, 2012, 21 : 575 - 582