Scaling laws for the multidimensional Burgers equation with quadratic external potential

被引:12
|
作者
Leonenko, N. N.
Ruiz-Medina, M. D.
机构
[1] Cardiff Univ, Cardiff Sch Math, Cardiff CF24 4AG, S Glam, Wales
[2] Univ Granada, Dept Stat & Operat Res, E-18071 Granada, Spain
基金
英国工程与自然科学研究理事会;
关键词
nonhomogeneous multidimensional Burgers equation; quadratic external potential; scaling laws; spatiotemporal random fields; strongly dependent random initial conditions;
D O I
10.1007/s10955-006-9136-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.
引用
收藏
页码:191 / 205
页数:15
相关论文
共 50 条