On the structure of normal subgroups of potent p-groups

被引:26
|
作者
González-Sánchez, J
Jaikin-Zapirain, A [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Fac Ciencias, E-28049 Madrid, Spain
[2] Univ Basque Country, Fac Ciencias, Dept Matemat, E-48080 Bilbao, Spain
关键词
D O I
10.1016/j.jalgebra.2003.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group satisfying [G, G] less than or equal to G(4) for p = 2 and gamma(p- 1) (G) less than or equal to G(p) for p > 2 The main goal of this paper is to show that any normal subgroup N of G lying in G(2) is power abelian, that is, the following holds: (1) N-pk = {g(pk) \ g is an element of N}; (2) Omega(k)(N) = {g is an element of N \ o(g) less than or equal to p(k)}, and (3) \N-pk\ = \N : Omega(k)(N)\. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:193 / 209
页数:17
相关论文
共 50 条