TIME SERIES OF URBAN RADIATIVE BUDGET MAPS DERIVED FROM EO SATELLITES USING A PHYSICAL REMOTE SENSING MODEL

被引:0
|
作者
Gastellu-Etchegorry, J. P. [1 ]
Landier, L. [1 ]
Al Bitar, A. [1 ]
Lauret, N. [1 ]
Yin, T. [1 ,2 ,3 ]
Qi, J. [1 ,4 ]
Guilleux, J. [1 ]
Chavanon, E. [1 ]
Feigenwinter, C. [5 ]
Mitraka, Z. [6 ]
Chrysoulakis, N. [6 ]
机构
[1] Univ Toulouse, IRD, CNRS, CESBIO UPS,CNES, F-31401 Toulouse 9, France
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] USRA GESTAR, Greenbelt, MD 20771 USA
[4] Beijing Normal Univ, Coll Remote Sci & Engn, Beijing, Peoples R China
[5] Basel Univ, UNIBAS, Basel, Switzerland
[6] Fdn Res & Technol FORTH, Iraklion, Greece
基金
欧盟地平线“2020”;
关键词
DART; inversion; optical properties; radiative budget; urban; CANOPY; FOREST; RESOLUTION; TEMPERATURE; PARAMETERS; RETRIEVAL; AIRBORNE; BOREAL; REGIME; IMAGES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Models that simulate the radiative budget (RB) and remote sensing (RS) observation of landscapes with physical approaches and consideration of the three-dimensional (3-D) architecture of Earth surfaces are increasingly needed to better understand the life-essential cycles and processes of our planet and to further develop RS technology. DART (Discrete Anisotropic Radiative Transfer) is one of the most comprehensive physically based 3-D models of Earth atmosphere optical radiative transfer (RT), from ultraviolet to thermal infrared. It simulates the optical 3-D RB and signal of proximal, aerial and satellite imaging spectrometers and laser scanners, for any urban and/or natural landscapes and for any experimental and instrumental configurations. It is freely available for research and teaching activities. Here, an application is presented after a summary of its theory and recent advances: inversion of Sentinel 2 images for simulating time series of urban radiative budget Q(SW)* maps through the determination of maps of urban surface material. Results are very encouraging: satellite and in-situ Q(SW)* are very close (RMSE approximate to 15 W/m(2); i.e., 2.7% mean relative difference).
引用
收藏
页数:4
相关论文
共 50 条
  • [1] DART: A TOOL FOR STUDYING EARTH SURFACES - TIME SERIES OF URBAN RADIATIVE BUDGET FROM EO SATELLITES
    Gastellu-Etchegorry, J. P.
    Landier, L.
    Al Bitar, A.
    Lauret, N.
    Yin, T.
    Qi, J.
    Guilleux, J.
    Chavanon, E.
    Feigenwinter, C.
    Mitraka, Z.
    Chrysoulakis, N.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1692 - 1695
  • [2] Preparation of physical characteristics maps using Remote Sensing and GIS: A model study from Bhutan
    Asadi, S.S.
    Namgay, Sonam
    Namgyel, Tandin
    Ratu
    International Journal of Earth Sciences and Engineering, 2013, 6 (02): : 52 - 61
  • [3] Calibration of urban canopies albedo and 3D shortwave radiative budget using remote-sensing data and the DART model
    Landier, L.
    Gastellu-Etchegorry, J. P.
    Al Bitar, A.
    Chavanon, E.
    Lauret, N.
    Feigenwinter, C.
    Mitraka, Z.
    Chrysoulakis, N.
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01): : 739 - 753
  • [4] Improving the Calibration of the MOLAND Urban Growth Model with Land-Use Information Derived from a Time-Series of Medium Resolution Remote Sensing Data
    Van de Voorde, Tim
    van der Kwast, Johannes
    Uljee, Inge
    Engelen, Guy
    Canters, Frank
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2010, PT 1, PROCEEDINGS, 2010, 6016 : 89 - +
  • [5] Agriculture Phenology Monitoring Using NDVI Time Series Based on Remote Sensing Satellites: A Case Study of Guangdong, China
    Wenzhong Komal Choudhary
    Mukesh Singh Shi
    Samuel Boori
    Optical Memory and Neural Networks, 2019, 28 : 204 - 214
  • [6] Agriculture Phenology Monitoring Using NDVI Time Series Based on Remote Sensing Satellites: A Case Study of Guangdong, China
    Choudhary, Komal
    Shi, Wenzhong
    Boori, Mukesh Singh
    Corgne, Samuel
    OPTICAL MEMORY AND NEURAL NETWORKS, 2019, 28 (03) : 204 - 214
  • [7] Classification of remote sensing images from urban areas using a fuzzy model
    Chanussot, J
    Benediktsson, JA
    Vincent, M
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 556 - 559
  • [8] Spatialisation of a crop model using phenology derived from remote sensing data
    Duchemin, B
    Hadria, R
    Rodriguez, JC
    Lahrouni, A
    Khabba, S
    Boulet, G
    Mougenot, B
    Maisongrande, P
    Watts, C
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2200 - 2202
  • [9] Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model
    Dashbold, Batmyagmar
    Bryson, L. Sebastian
    Crawford, Matthew M.
    NATURAL HAZARDS, 2023, 116 (01) : 235 - 265
  • [10] Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model
    Batmyagmar Dashbold
    L. Sebastian Bryson
    Matthew M. Crawford
    Natural Hazards, 2023, 116 : 235 - 265