Study on Axial Compressive Capacity of FRP-Confined Concrete-Filled Steel Tubes and Its Comparisons with Other Composite Structural Systems

被引:27
|
作者
Deng, Jun [1 ]
Zheng, Yifeng [1 ]
Wang, Yi [1 ]
Liu, Tonghua [1 ]
Li, Hui [1 ]
机构
[1] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
BEHAVIOR; SHRINKAGE;
D O I
10.1155/2017/6272754
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Concrete-filled steel tubular (CFST) columns have been widely used for constructions in recent decades because of their high axial strength. In CFSTs, however, steel tubes are susceptible to degradation due to corrosion, which results in the decrease of axial strength of CFSTs. To further improve the axial strength of CFST columns, carbon fiber reinforced polymer (CFRP) sheets and basalt fiber reinforced polymer (BFRP) sheets are applied to warp the CFSTs. This paper presents an experimental study on the axial compressive capacity of CFRP-confined CFSTs and BFRP-confined CFSTs, which verified the analytical model with considering the effect of concrete self-stressing. CFSTs wrapped with FRP exhibited a higher ductile behavior. Wrapping with CFRP and BFRP improves the axial compressive capacity of CFSTs by 61.4% and 17.7%, respectively. Compared with the previous composite structural systems of concrete-filled FRP tubes (CFFTs) and double-skin tubular columns (DSTCs), FRP-confined CFSTs were convenient in reinforcing existing structures because of softness of the FRP sheets. Moreover, axial compressive capacity of CFSTs wrapped with CFRP sheets was higher than CFFTs and DSTCs, while the compressive strength of DSTCs was higher than the retrofitted CFSTs.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] FRP-Confined Circular Concrete-Filled Thin Steel Tubes under Axial Compression
    Hu, Y. M.
    Yu, T.
    Teng, J. G.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2011, 15 (05) : 850 - 860
  • [2] STRAIN EFFICIENCY OF FRP JACKETS IN FRP-CONFINED CONCRETE-FILLED CIRCULAR STEEL TUBES
    Li, S. Q.
    Chen, J. F.
    Bisby, L. A.
    Hu, Y. M.
    Teng, J. G.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2012, 12 (01) : 75 - 94
  • [3] Analysis on bearing capacity of FRP-confined concrete filled steel tubes
    Yu, Feng
    Niu, Di-Tao
    Wang, Zhong-Wen
    Liu, Wan-Li
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2007, 39 (SUPPL. 2): : 44 - 46
  • [4] Behaviour of FRP-confined compound concrete-filled circular thin steel tubes under axial compression
    Zhao, Junliang
    Xu, Chenhao
    Sun, Linzhu
    Wu, Dongyan
    ADVANCES IN STRUCTURAL ENGINEERING, 2020, 23 (09) : 1772 - 1784
  • [5] Effect of Geometric Discontinuities on FRP Strain Efficiency in FRP-Confined Circular Concrete-Filled Steel Tubes
    Li, S. Q.
    Chen, J. F.
    Bisby, L. A.
    Hu, Y. M.
    Teng, J. G.
    ADVANCES IN FRP COMPOSITES IN CIVIL ENGINEERING, 2010, : 595 - +
  • [6] Behavior of FRP-Confined Concrete-Filled Steel Tube Columns
    Lu, Yiyan
    Li, Na
    Li, Shan
    POLYMERS, 2014, 6 (05): : 1333 - 1349
  • [7] Compressive behavior of FRP-confined concrete-filled PVC tubular columns
    Fakharifar, Mostafa
    Chen, Genda
    COMPOSITE STRUCTURES, 2016, 141 : 91 - 109
  • [8] Numerical Study on the Axial Compressive Behavior of Steel-Tube-Confined Concrete-Filled Steel Tubes
    Li, Xiaozhong
    Zhang, Sumei
    Tao, Yu
    Zhang, Bing
    MATERIALS, 2024, 17 (01)
  • [9] FRP-confined circular concrete-filled steel tubular columns under cyclic axial compression
    Yu, T.
    Hu, Y. M.
    Teng, J. G.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2014, 94 : 33 - 48
  • [10] Experimental investigation into FRP-confined concrete-filled steel tubular columns under axial compression
    Ma, Lu
    Zhou, Changlin
    Zhang, Ji
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (03) : 109 - 122