Steiner Distance in Join, Corona, Cluster, and Threshold Graphs

被引:4
|
作者
Wang, Zhao [1 ]
Mao, Yaping [2 ]
Melekian, Christopher [3 ]
Cheng, Eddie [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Qinghai Normal Univ, Dept Math, Xining 810008, Qinghai, Peoples R China
[3] Oakland Univ, Dept Math & Stat, Oakland, MI 48309 USA
基金
美国国家科学基金会;
关键词
wireless sensor networks; localization; mobile beacon; mobile anchor; RSSI; DIAMETER;
D O I
10.6688/JISE.201907_35(4).0001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a connected graph G and a subset S of its vertices, the Steiner tree problem consists of finding a minimum-size connected subgraph containing S. The Steiner distance of S is the size of a Steiner tree for S, and the Steiner k-diameter of G is the maximum value of the Steiner distance over all vertex subsets S of cardinality k. Calculation of Steiner trees and Steiner distance is known to be NP-hard in general, so applications may benefit from using graphs where the Steiner distance and structure of Steiner trees are known. In this paper, we investigate the Steiner distance and Steiner k-diameter of the join, corona, and cluster of connected graphs, as well as threshold graphs.
引用
收藏
页码:721 / 735
页数:15
相关论文
共 50 条
  • [1] Steiner Distance in Join, Corona, and Threshold Graphs
    Wang, Zhao
    Mao, Yaping
    Melekian, Christopher
    Cheng, Eddie
    2017 14TH INTERNATIONAL SYMPOSIUM ON PERVASIVE SYSTEMS, ALGORITHMS AND NETWORKS & 2017 11TH INTERNATIONAL CONFERENCE ON FRONTIER OF COMPUTER SCIENCE AND TECHNOLOGY & 2017 THIRD INTERNATIONAL SYMPOSIUM OF CREATIVE COMPUTING (ISPAN-FCST-ISCC), 2017, : 100 - 104
  • [2] The distance spectrum of corona and cluster of two graphs
    Indulal, G.
    Stevanovic, Dragan
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 186 - 192
  • [3] Generalized (edge-)connectivity of join, corona and cluster graphs
    Wei, Meiqin
    Zhang, He
    Wang, Zhao
    Mao, Yaping
    AIMS MATHEMATICS, 2022, 7 (09): : 16775 - 16786
  • [4] Hyperbolicity in the corona and join of graphs
    Carballosa, Walter
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    AEQUATIONES MATHEMATICAE, 2015, 89 (05) : 1311 - 1327
  • [5] Hyperbolicity in the corona and join of graphs
    Walter Carballosa
    José M. Rodríguez
    José M. Sigarreta
    Aequationes mathematicae, 2015, 89 : 1311 - 1327
  • [6] Geodetic Domination in the Corona and Join of Graphs
    Chellathurai, S. Robinson
    Vijaya, S. Padma
    Journal of Discrete Mathematical Sciences and Cryptography, 2014, 17 (01) : 81 - 90
  • [7] Steiner distance and convexity in graphs
    Caceres, J.
    Marquez, A.
    Puertas, M. L.
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (03) : 726 - 736
  • [8] STEINER DISTANCE STABLE GRAPHS
    GODDARD, W
    OELLERMANN, OR
    SWART, HC
    DISCRETE MATHEMATICS, 1994, 132 (1-3) : 65 - 73
  • [9] Complexity of Join and Corona graphs and Chebyshev polynomials
    Daoud, S. N.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2018, 12 (05): : 557 - 572
  • [10] On the strong metric dimension of corona product graphs and join graphs
    Kuziak, Dorota
    Yero, Ismael G.
    Rodriguez-Velazquez, Juan A.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (7-8) : 1022 - 1027