A Novel Multi-scale Co-estimation Framework of State of Charge, State of Health, and State of Power for Lithium-Ion Batteries

被引:0
|
作者
Hu, Xiaosong [1 ]
Jiang, Haifu [1 ]
Feng, Fei [1 ]
Zou, Changfu [2 ]
机构
[1] Chongqing Univ, Dept Automot Engn, Chongqing 400044, Peoples R China
[2] Chalmers Univ Technol, Dept Elect Engn, S-41296 Gothenburg, Sweden
基金
中国国家自然科学基金;
关键词
State of Charge; State of Health; State of Power; Batteries; MANAGEMENT-SYSTEMS; OF-CHARGE; KALMAN; PARAMETER; PACKS; MODEL;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Considering the underlying coupling among State of Charge (SOC), State of Health (SOH), and State of Power (SOP), this work proposes a novel multi-timescale co-estimation framework for these lithium-ion battery states. A modified moving horizon estimator (mMHE) is applied to the SOC estimation in real time. The model parameters affecting the SOP estimation are periodically updated through an mMHE optimization with a relatively long time horizon. The ampere-hour integral and the estimated SOC are employed to realize the SOH estimation offline. The effectiveness of the joint SOC/SOH/SOP estimation is validated experimentally on real-world batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The Co-estimation of State of Charge, State of Health, and State of Function for Lithium-Ion Batteries in Electric Vehicles
    Shen, Ping
    Ouyang, Minggao
    Lu, Languang
    Li, Jianqiu
    Feng, Xuning
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (01) : 92 - 103
  • [2] State of Charge, State of Health and State of Function Co-estimation of Lithium-ion Batteries for Electric Vehicles
    Shen, Ping
    Ouyang, Minggao
    Lu, Languang
    Li, Jianqiu
    2016 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2016,
  • [3] A Systematic Framework for State of Charge, State of Health and State of Power Co-Estimation of Lithium-Ion Battery in Electric Vehicles
    Zhang, Tao
    Guo, Ningyuan
    Sun, Xiaoxia
    Fan, Jie
    Yang, Naifeng
    Song, Junjie
    Zou, Yuan
    SUSTAINABILITY, 2021, 13 (09)
  • [4] A novel Co-estimation framework of state-of-charge, state-of-power and capacity for lithium-ion batteries using multi-parameters fusion method
    Li, Kuo
    Gao, Xiao
    Liu, Caixia
    Chang, Chun
    Li, Xiaoyu
    ENERGY, 2023, 269
  • [5] Co-Estimation of State-of-Charge and State-of-Health for Lithium-Ion Batteries Considering Temperature and Ageing
    Lai, Xin
    Yuan, Ming
    Tang, Xiaopeng
    Yao, Yi
    Weng, Jiahui
    Gao, Furong
    Ma, Weiguo
    Zheng, Yuejiu
    ENERGIES, 2022, 15 (19)
  • [6] Co-Estimation of State-of-Charge and State-of-Health for High-Capacity Lithium-Ion Batteries
    Xiong, Ran
    Wang, Shunli
    Feng, Fei
    Yu, Chunmei
    Fan, Yongcun
    Cao, Wen
    Fernandez, Carlos
    BATTERIES-BASEL, 2023, 9 (10):
  • [7] Co-Estimation of State of Charge and State of Health for Lithium-Ion Batteries Based on Fractional-Order Calculus
    Hu, Xiaosong
    Yuan, Hao
    Zou, Changfu
    Li, Zhe
    Zhang, Lei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (11) : 10319 - 10329
  • [8] State of charge and state of health estimation of Lithium-Ion batteries
    Buchman, Attila
    Lung, Claudiu
    2018 IEEE 24TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2018, : 382 - 385
  • [9] A Model Fusion Method for Online State of Charge and State of Power Co-Estimation of Lithium-Ion Batteries in Electric Vehicles
    Guo, Ruohan
    Shen, Weixiang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (11) : 11515 - 11525
  • [10] Co-estimation of state of charge and state of power for lithium-ion batteries based on fractional variable-order model
    Lai, Xin
    He, Long
    Wang, Shuyu
    Zhou, Long
    Zhang, Yinfan
    Sun, Tao
    Zheng, Yuejiu
    JOURNAL OF CLEANER PRODUCTION, 2020, 255