Modeling of the Atomic Diffusion Coefficient in Nanostructured Materials

被引:6
|
作者
Hu, Zhiqing [1 ]
Li, Zhuo [2 ]
Tang, Kai [2 ]
Wen, Zi [2 ,3 ]
Zhu, Yongfu [2 ,3 ]
机构
[1] Jilin Univ, Roll Forging Res Inst, Changchun 130022, Jilin, Peoples R China
[2] Jilin Univ, Sch Mat Sci & Engn, Changchun 130022, Jilin, Peoples R China
[3] Jilin Univ, Key Lab Automobile Mat, Minist Educ, Changchun 130022, Jilin, Peoples R China
来源
ENTROPY | 2018年 / 20卷 / 04期
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
nanostructured materials; diffusion coefficient; grain boundary energy; NANOCRYSTALLINE MATERIALS; ACTIVATION-ENERGY; SMALL PARTICLES; MELTING-POINT; NANOPARTICLES; TEMPERATURE; BISMUTH; COPPER; GOLD; IRON;
D O I
10.3390/e20040252
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A formula has been established, which is based on the size-dependence of a metal's melting point, to elucidate the atomic diffusion coefficient of nanostructured materials by considering the role of grain-boundary energy. When grain size is decreased, a decrease in the atomic diffusion activation energy and an increase in the corresponding diffusion coefficient can be observed. Interestingly, variations in the atomic diffusion activation energy of nanostructured materials are small relative to nanoparticles, depending on the size of the grain boundary energy. Our theoretical prediction is in accord with the computer simulation and experimental results of the metals described.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Modeling the atomic diffusion coefficient of channeled particles
    Shtanov Y.N.
    Koshcheev V.P.
    Morgun D.A.
    Panina T.A.
    Mathematical Models and Computer Simulations, 2017, 9 (2) : 201 - 205
  • [2] Atomic diffusion on nanostructured surfaces
    Bulou, Herve
    SUPERLATTICES AND MICROSTRUCTURES, 2008, 44 (4-5) : 533 - 541
  • [3] Diffusion in nanostructured materials
    Divinski, Sergiy V.
    DIFFUSION IN MATERIALS - DIMAT2008, 2009, 289-292 : 623 - 632
  • [4] Diffusion in nanostructured materials
    Divinski, SV
    Larikov, LN
    DEFECT AND DIFFUSION FORUM, 1997, 143 : 1469 - 1474
  • [5] Effective gas diffusion coefficient in fibrous materials by mesoscopic modeling
    He, Xinting
    Guo, Yangyu
    Li, Min
    Pan, Ning
    Wang, Moran
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 107 : 736 - 746
  • [6] Pore-scale modeling of effective diffusion coefficient of building materials
    Hussain, Mazhar
    Tian, En
    Cao, Tao-Feng
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 90 : 1266 - 1274
  • [8] DIFFUSION COEFFICIENT OF ATOMIC MERCURY IN ISOOCTANE
    KREEVOY, MM
    SCHER, HB
    JOURNAL OF PHYSICAL CHEMISTRY, 1965, 69 (11): : 3814 - &
  • [9] Modeling plasticity in nanostructured materials
    Voyiadjis, GZ
    Abu Al-Rub, RK
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL & 13TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2005, : 119 - 124
  • [10] Modeling the precursor utilization in atomic layer deposition on nanostructured materials in fluidized bed reactors
    Grillo, Fabio
    Kreutzer, Michiel T.
    van Ommen, J. Ruud
    CHEMICAL ENGINEERING JOURNAL, 2015, 268 : 384 - 398