Deforming hyperbolic hexagons with applications to the arc and the Thurston metrics on Teichmuller spaces

被引:4
|
作者
Papadopoulos, Athanase [1 ,2 ]
Yamada, Sumio [3 ]
机构
[1] Univ Strasbourg, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[3] Gakushuin Univ, 1-5-1 Mejiro, Tokyo 1718588, Japan
来源
MONATSHEFTE FUR MATHEMATIK | 2017年 / 182卷 / 04期
关键词
Hyperbolic geometry; Teichmuller space; Arc metric; Geodesic; Lipschitz map; Thurston's metric; Deforming hyperbolic hexagons; SURFACES;
D O I
10.1007/s00605-017-1023-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each right-angled hexagon in the hyperbolic plane, we construct a one-parameter family of right-angled hexagons with a Lipschitz map between any two elements in this family, realizing the smallest Lipschitz constant in the homotopy class of this map relative to the boundary. As a consequence of this construction, we exhibit new geodesics for the arc metric on the Teichmuller space of an arbitrary surface of negative Euler characteristic with nonempty boundary. We also obtain new geodesics for Thurston's metric on Teichmuller spaces of hyperbolic surfaces without boundary.
引用
收藏
页码:913 / 939
页数:27
相关论文
共 50 条