Remarks on 2-dimensional quasiperiodic tilings with rotational symmetries

被引:1
|
作者
Kato, Kazuhisa [1 ]
Komatsu, Kazushi [1 ]
Nakano, Fumihiko [1 ]
Nomakuchi, Kentaro [1 ]
Yamauchi, Masatetsu
机构
[1] Kochi Univ, Fac Sci, Dept Math, Kochi 7808520, Japan
关键词
Quasiperiodic tiling; substitution rule; rotational symmetry;
D O I
10.32917/hmj/1233152776
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a sequentially compact space of patches. By using this construction, we analyze certain symmetries of tilings obtained by substitution rules.
引用
收藏
页码:385 / 395
页数:11
相关论文
共 50 条
  • [1] Primitive substitution tilings with rotational symmetries
    Say-awen, April Lynne D.
    De las Penas, Ma Louise Antonette N.
    Frettloeh, Dirk
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : 388 - 398
  • [2] A Jordan curve theorem for 2-dimensional tilings
    Fajardo-Rojas, Diego
    Jonard-Perez, Natalia
    TOPOLOGY AND ITS APPLICATIONS, 2021, 300
  • [3] Remarks on 2-dimensional HQFTs
    Staic, Mihai D.
    Turaev, Vladimir
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (03): : 1367 - 1393
  • [4] HIGHER SYMMETRIES OF 2-DIMENSIONAL LATTICES
    SHABAT, AB
    PHYSICS LETTERS A, 1995, 200 (02) : 121 - 133
  • [5] ALGEBRAIC CONSTRUCTION OF ONE-DIMENSIONAL QUASIPERIODIC TILINGS
    LITVIN, DB
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (03) : 740 - 743
  • [6] TRANSPORT-PROPERTIES OF 2-DIMENSIONAL TILINGS WITH CORNERS
    HELSING, J
    PHYSICAL REVIEW B, 1991, 44 (21): : 11677 - 11682
  • [7] REMARKS ON ROTATIONAL INVARIANCE OF 2-DIMENSIONAL ISING-MODEL CORRELATION-FUNCTIONS
    BAROUCH, E
    MCCOY, BM
    TRACY, CA
    WU, TT
    PHYSICS LETTERS A, 1976, 57 (02) : 111 - 111
  • [8] THE ROTATIONAL PROPERTIES OF 2-DIMENSIONAL TURBULENCE
    SPEZIALE, CG
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (09): : 1098 - 1099
  • [9] A mathematical classification for symmetries in 2-dimensional quasicrystals
    Artamonov, V.
    Sanchez, S.
    RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B : 32 - 35
  • [10] CLASSICAL SYMMETRIES OF SOME 2-DIMENSIONAL MODELS
    SCHWARZ, JH
    NUCLEAR PHYSICS B, 1995, 447 (01) : 137 - 182