Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets

被引:113
|
作者
Oskouyi, Amirhossein Biabangard [1 ]
Sundararaj, Uttandaraman [2 ]
Mertiny, Pierre [1 ]
机构
[1] Univ Alberta, Dept Mech Engn, Adv Composite Mat Engn Grp, Edmonton, AB T6G 2G8, Canada
[2] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
关键词
nanocomposites; electrical properties; modeling; piezoresistivity effect; MONTE-CARLO MODEL; PERCOLATION-THRESHOLD; ELECTRICAL-CONDUCTIVITY; PHYSICAL-PROPERTIES; GRAPHITE; BEHAVIOR; RESISTIVITY; SIMULATION; PARTICLES; WAVINESS;
D O I
10.3390/ma7042501
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional finite element resistor network. Parameters related to the percolation threshold and a power-low describing the conductivity behavior were determined. The piezoresistivity behavior of conductive composites was studied employing a reoriented resistor network emulating a conductive composite subjected to mechanical strain. The effects of the governing parameters, i.e., electron tunneling distance, conductive particle aspect ratio and size effects on conductivity behavior were examined.
引用
收藏
页码:2501 / 2521
页数:21
相关论文
共 50 条
  • [1] Tensile properties of graphene nano-platelets reinforced polypropylene composites
    Liang, Ji-Zhao
    Du, Qiang
    Tsui, Gary Chi-Pong
    Tang, Chak-Yin
    COMPOSITES PART B-ENGINEERING, 2016, 95 : 166 - 171
  • [2] Oleylamine functionalization of boron nitride nano-platelets for Polyamide-6 thermally conductive injection moulded composites
    Bragaglia, Mario
    Paleari, Lorenzo
    Lamastra, Francesca R.
    Russo, Pietro
    Fabbrocino, Francesco
    Nanni, Francesca
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2023, 36 (07) : 2862 - 2882
  • [3] Graphene nano-platelets reinforced aluminum composites with anisotropic compressive properties
    Zheng, Zhong
    Zhong, Shijiang
    Zhang, Xuexi
    Li, Jianchao
    Geng, Lin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 798
  • [4] Biosynthesized CuO nano-platelets: Physical properties & enhanced thermal conductivity nanofluidics
    Sone, B. T.
    Diallo, A.
    Fuku, X. G.
    Gurib-Fakim, A.
    Maaza, M.
    ARABIAN JOURNAL OF CHEMISTRY, 2020, 13 (01) : 160 - 170
  • [5] Melt Flow and Flexural Properties of Polypropylene Composites Reinforced with Graphene Nano-Platelets
    Liang, J. Z.
    Du, Q.
    INTERNATIONAL POLYMER PROCESSING, 2018, 33 (01) : 35 - 41
  • [6] The Using of Graphene Nano-Platelets for a Better through-Plane Thermal Conductivity for Polypropylene
    Seki, Yoldas
    Avci, Beliz
    Uzun, Secil
    Kaya, Nusret
    Atagur, Metehan
    Sever, Kutlay
    Sarikanat, Mehmet
    POLYMER COMPOSITES, 2019, 40 (S2) : E1320 - E1328
  • [7] Poly(vinylidene fluoride)/Graphene Nano-Platelets Electrically Conductive Composite Foam for Thermoelectric Applications
    Sun, Yu-Chen
    Terakita, Daryl
    Tseng, Alex C.
    Naguib, Hani E.
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS AND COMPOSITES 2015, 2015, 9432
  • [8] Magnetoelastic modelling of composites containing randomly dispersed ferromagnetic particles
    Yin, H. M.
    Sun, L. Z.
    PHILOSOPHICAL MAGAZINE, 2006, 86 (28) : 4367 - 4395
  • [9] Melt extrudate swell behavior of graphene nano-platelets filled-polypropylene composites
    Liang, J. Z.
    Du, Q.
    Wei, L. Y.
    Tsui, C. P.
    Tang, C. Y.
    Law, Wc
    Zhang, S. D.
    POLYMER TESTING, 2015, 45 : 179 - 184
  • [10] PERCOLATION CONDUCTIVITY OF POLYMER COMPOSITES FILLED WITH DISPERSED CONDUCTIVE FILLER
    MAMUNYA, EP
    DAVIDENKO, VV
    LEBEDEV, EV
    POLYMER COMPOSITES, 1995, 16 (04) : 319 - 324