Finite element simulation of metal-semiconductor-metal photodetector

被引:6
|
作者
Guarino, G. [1 ,2 ]
Donaldson, W. R. [1 ,2 ]
Mikulics, M. [3 ,4 ]
Marso, M. [3 ,5 ]
Kordos, P. [6 ]
Sobolewski, Roman [1 ,2 ]
机构
[1] Univ Rochester, Dept Elect & Comp Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Laser Energet Lab, Rochester, NY 14627 USA
[3] Res Ctr Julich, Inst Bio & Nanosyst, D-52425 Julich, Germany
[4] JARA, Fundamentals Future Informat Technol, Aachen, Germany
[5] Univ Luxembourg, Fac Sci Technol & Commun, L-1359 Luxembourg, Luxembourg
[6] Slovak Acad Sci, Inst Elect Engn, SK-84104 Bratislava, Slovakia
关键词
Alloyed-contact devices; Low-temperature-grown GaAs; Metal-semiconductor-metal photodetectors; Finite element analysis; Ultrafast optical detectors; TEMPERATURE-GROWN GAAS; ULTRAFAST; CONTACTS; DEVICES; BULK; THZ;
D O I
10.1016/j.sse.2009.07.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The successful application of finite element analysis to ultrafast optoelectronic devices is demonstrated. Finite element models have been developed for both an alloyed- and surface-contact metal-semiconductor-metal photodetectors. The simulation results agree with previously reported experimental data. The alloyed device, despite having a somewhat larger capacitance, has a non-illuminated region of lower resistance with a more-uniform and deeper-penetrating electric field and carrier transport current. The latter explains, in terms of the equivalent lumped parameters, the experimentally observed faster response of the alloyed device. The model is further used to predict improved responsivity, based on electrode spacing and antireflective coating. We project that increasing the depth of the alloyed contact beyond approximately half of the optical penetration depth will not yield significantly improved responsivity. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1144 / 1148
页数:5
相关论文
共 50 条
  • [1] A heterojunction metal-semiconductor-metal photodetector
    Nabet, B
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1997, 9 (02) : 223 - 225
  • [2] MODELING OF METAL-SEMICONDUCTOR-METAL PHOTODETECTOR
    陈维友
    刘式墉
    Journal of Electronics(China), 1994, (04) : 377 - 382
  • [3] Photocurrents in a metal-semiconductor-metal photodetector
    Sarto, AW
    VanZeghbroeck, BJ
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33 (12) : 2188 - 2194
  • [4] The back gated metal-semiconductor-metal photodetector
    Vickers, AJ
    Mashayekhi, HR
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES VI, PTS 1 AND 2, 1998, 3283 : 967 - 974
  • [5] Modeling of metal-semiconductor-metal photodetector for spice
    Gao, JJ
    Gao, BX
    Liang, CG
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2000, 26 (06) : 390 - 394
  • [6] NANOPOROUS SILICON METAL-SEMICONDUCTOR-METAL PHOTODETECTOR
    Atiwongsangthong, N.
    Niemcharoen, S.
    Titiroongruang, W.
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2010, 19 (04) : 713 - 721
  • [7] Study of a backgated metal-semiconductor-metal photodetector
    Vickers, AJ
    Hassan, MA
    Mashakekhi, HR
    Griguoli, A
    Hopkinson, M
    APPLIED PHYSICS LETTERS, 1996, 68 (06) : 815 - 817
  • [8] Numerical and experimental study of a Back-Gated metal-semiconductor-metal photodetector using finite element method
    Barkhordari, Ali
    Mashayekhi, Hamid Reza
    Azizian-Kalandaragh, Yashar
    PHYSICA B-CONDENSED MATTER, 2020, 596
  • [9] Modeling and simulation of metal-semiconductor-metal photodetector using VHDL-AMS
    Wu, S
    Kang, SM
    BMAS 2004: IEEE INTERNATIONAL BEHAVIORAL MODELING AND SIMULATION CONFERENCE - PROCEEDINGS, 2004, : 59 - 63
  • [10] Two-dimensional numerical simulation of metal-semiconductor-metal photodetector structures
    Debbar, N
    ICM 2002: 14TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, 2002, : 269 - 272