One-dimensional dynamics for traveling fronts in coupled map lattices

被引:19
|
作者
Carretero-González, R [1 ]
Arrowsmith, DK [1 ]
Vivaldi, F [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 02期
关键词
D O I
10.1103/PhysRevE.61.1329
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Multistable coupled map lattices typically support traveling fronts, separating two adjacent stable phases. We show how the existence of an invariant function describing the front profile allows a reduction of the infinitely dimensional dynamics to a one-dimensional circle homeomorphism, whose rotation number gives the propagation velocity. The mode locking of the velocity with respect to the system parameters then typically follows. We study the behavior of fronts near the boundary of parametric stability, and we explain how the mode locking tends to disappear as we approach the continuum limit of an infinite density of sites.
引用
收藏
页码:1329 / 1336
页数:8
相关论文
共 50 条
  • [1] KINK DYNAMICS IN ONE-DIMENSIONAL COUPLED MAP LATTICES
    FERNANDEZ, B
    CHAOS, 1995, 5 (03) : 602 - 608
  • [2] Periodic solutions in one-dimensional coupled map lattices
    Zheng, YA
    Liu, ZR
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2003, 24 (05) : 521 - 526
  • [3] Periodic solutions in one-dimensional coupled map lattices
    Zheng Yong-ai
    Liu Zeng-rong
    Applied Mathematics and Mechanics, 2003, 24 (5) : 521 - 526
  • [4] Wavelike patterns in one-dimensional coupled map lattices
    He, GW
    Lambert, A
    Lima, R
    PHYSICA D, 1997, 103 (1-4): : 404 - 411
  • [5] PERIODIC SOLUTIONS IN ONE-DIMENSIONAL COUPLED MAP LATTICES
    郑永爱
    刘曾荣
    Applied Mathematics and Mechanics(English Edition), 2003, (05) : 521 - 526
  • [6] COLLECTIVE BEHAVIOR IN ONE-DIMENSIONAL LOCALLY COUPLED MAP LATTICES
    BINDER, PM
    PRIVMAN, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (13): : L775 - L780
  • [7] SPATIOTEMPORAL CHAOS IN ONE-DIMENSIONAL AND TWO-DIMENSIONAL COUPLED MAP LATTICES
    KANEKO, K
    PHYSICA D, 1989, 37 (1-3): : 60 - 82
  • [8] Low dimensional traveling interfaces in coupled map lattices
    Carretero-Gonzalez, R
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (12): : 2745 - 2754
  • [9] Traveling solitons in one-dimensional quartic lattices
    Mahan, G. D.
    PHYSICAL REVIEW B, 2006, 74 (09):
  • [10] Phason dynamics in one-dimensional lattices
    Lipp, Hansjoerg
    Engel, Michael
    Sonntag, Steffen
    Trebin, Hans-Rainer
    PHYSICAL REVIEW B, 2010, 81 (06)