A novel arbitrary reference configuration (ARC) Lagrangian formulation and contrast to total/updated Lagrangian formulation in finite strain applications

被引:0
|
作者
Zhou, X [1 ]
Tamma, KK [1 ]
Sha, D [1 ]
机构
[1] Univ Minnesota, Army High Performance Comp Res Ctr, Minneapolis, MN 55455 USA
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An arbitrary reference configuration (ARC) elasticity theory is proposed in the paper with the attempt to circumvent the deficiencies associated with the hyperelasticity and hypoelasticity theories. The corresponding stress update formulation and the ARC Lagrangian formulation is also developed. Some numerical examples are shown to demonstrate the effectiveness of the proposed theory.
引用
收藏
页码:2216 / 2221
页数:6
相关论文
共 50 条
  • [1] Comparison of large strain method using total and updated Lagrangian finite element formulation and small strain method
    He, Kaisheng
    Shen, Zhujiang
    Peng, Xinxuan
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2000, 22 (01): : 30 - 34
  • [2] An alternative updated Lagrangian formulation for finite particle method
    Chen, Ding
    Huang, Wenxiong
    Sloan, Scott W.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 343 : 490 - 505
  • [3] Stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements
    Ecole Polytechnique Federale de, Lausanne, Lausanne, Switzerland
    East West J Numer Math, 2 (105-131):
  • [4] Updated lagrangian mixed finite element formulation for quasi and fully incompressible fluids
    Onate, Eugenio
    Carbonell, Josep M.
    COMPUTATIONAL MECHANICS, 2014, 54 (06) : 1583 - 1596
  • [5] An updated Lagrangian Bézier finite element formulation for the analysis of slender beams
    Greco L.
    Cuomo M.
    Castello D.
    Scrofani A.
    Mathematics and Mechanics of Solids, 2022, 27 (10) : 2110 - 2138
  • [6] Updated lagrangian mixed finite element formulation for quasi and fully incompressible fluids
    Eugenio Oñate
    Josep M. Carbonell
    Computational Mechanics, 2014, 54 : 1583 - 1596
  • [7] LAGRANGIAN AND EULERIAN FINITE-ELEMENT FORMULATION FOR LARGE STRAIN ELASTOPLASTICITY
    KLEIBER, M
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1975, 23 (03): : 209 - 218
  • [8] A stabilized mixed finite element approximation for incompressible finite strain solid dynamics using a total Lagrangian formulation
    Castanar, Inocencio
    Baiges, Joan
    Codina, Ramon
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 368
  • [9] INTEGRATED FEM FORMULATION FOR TOTAL UPDATED-LAGRANGIAN METHOD IN GEOMETRICALLY NONLINEAR PROBLEMS
    NOGUCHI, H
    HISADA, T
    JSME INTERNATIONAL JOURNAL SERIES A-MECHANICS AND MATERIAL ENGINEERING, 1995, 38 (01): : 23 - 29
  • [10] Stabilized finite element method for incompressible solid dynamics using an updated Lagrangian formulation
    Nemer, R.
    Larcher, A.
    Coupez, T.
    Hachem, E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384 (384)